The Advanced Photon Source
a U.S. Department of Energy Office of Science User Facility

Dynamics & Structure

Ferroelectrics refer to materials with spontaneous electric polarization that can be switched by external electric fields. They are very similar to magnets but with electric instead of magnetic polarization. Besides their widespread applications in piezoelectric nanopositioners and ferroelectric RAMs that make use of the net ferroelectric polarization, the spatial arrangements of polarization domains in nominal atomic layers of ferroelectrics are also considered for high-density information storage due to their well-defined spatial structures with characteristic lengths as small as a few nm. The stability of the domain structures is therefore key to the design of non-volatile memories. However, tracking the domain motion in real time is extremely challenging as it requires detecting sub-angstrom atomic fluctuation on a nanometer spatial scale at elevated temperature. Researchers using the U.S. Department of Energy’s Advanced Photon Source overcame this obstacle with their study of serpentine striped ferroelectric nanodomains in a ferroelectric/dielectric superlattice. Ferroelectric polarization ordering is a promising candidate for self-assembly growth next-generation information storage, so their results provide a quantitative approach for measuring the stability of these structures, providing essential information for both modeling and application of complex ferroelectric oxides in a variety of technologies.
Some materials are like people. Let them relax in the sun for a little while and they perform a lot better. A collaboration carrying out research at the U.S. Department of Energy’s Advanced Photon Source found that to be the case with a perovskite compound touted as an efficient material to collect sunlight and convert it into energy.
With help from the U.S. Department of Energy’s Advanced Photon Source, researchers revealed the mechanism for metal-like heat performance in polymers. The team’s results may spur the development of polymer insulators as lightweight, flexible, and corrosion-resistant alternatives to traditional metal heat conductors, for applications ranging from heat dissipating materials in laptops and cellphones, to cooling elements in cars and refrigerators.
A university-national laboratory team of researchers has found a promising solution to those problems in a perovskite compound that actually expands under illumination, smoothing out defects in its crystal lattice and allowing more efficient charge transport across the interface, with improved power conversion efficiency) to over 20%.
Investigations at the U.S. Department of Energy’s Advanced Photon Source have demonstrated that a diiminol-based covalent organic framework can act as a rapid humidity sensor with an easily visible color change, providing an important proof-of-concept for using tautomerization-induced changes in COFs to design rapid and reversible sensing systems.
5-ID-B,C,D, 8-ID-E
Printing Ultrathin 2-D Polymer Electronics: The relatively simple techniques demonstrated by the researchers in this study may lead to the mass production of inexpensive, ultrathin polymer films down to monolayer thickness, with potential applications including photovoltaics, sensors, and wearable electronics.
Strong and Resilient Synthetic Tendons Produced from Hydrogels: Researchers who transformed a standard hydrogel into an artificial tendon with properties that meet and even surpass those of natural tendons used the the U.S. Department of Energy’s Advanced Photon Source to reveal the microscopic structures responsible for its outstanding features.
Now, a group of researchers has used the U.S. Department of Energy's Advanced Photon Source to examine how 2-D lead iodide perovskites form in real time. They found a method to enhance the quality of the 2-D cells, and now have a basis for rationally designing manufacturing techniques for high-quality commercial lead iodide perovskite solar cells.
Grazing-Incidence X-rays Illuminate Solar Cell Film Formation Mechanisms: As the demand for solar cells grows, so does the demand for less expensive, more efficient, and more reliable materials to build them. Research using the U.S. Department of Energy’s Advanced Photon Source describes steps for producing new, highly optimal materials for fabricating low-cost, reliable solar cells.
Stretchable Organic Transistors for Biomedical Applications: Scientists have succeeded in fabricating organic transistors that can be stretched to over twice their original length for thousands of cycles without degrading their performance. Research at the U.S. Department of Energy’s Advanced Photon Source revealed details about a new, highly durable material that is a major advance toward the practical use of film organic electrochemical transistor materials in many biomedical and sensor applications, as well as for other applications such as soft robotics.
Probing the Phase Dynamics of a Complex Oxide: Scientists using U.S. Department of Energy user facilities including the Advanced Photon Source have developed a technique that could be utilized for novel studies of complex oxides, which have applications in many current and future technologies.
8-ID-E, 12-BM-B
Probing the Phase Dynamics of a Complex Oxide: Scientists using the U.S. Department of Energy’s Advanced Photon Source have shown how oxygen ions interact with a complex oxide, strontium cobalt oxide, causing it to switch from a metal to an insulator and back again, a technique that could be used for novel studies of other complex oxides, which have applications in many current and future technologies.
8-ID-E, 12-BM-B
So-called cooperative behavior, in which molecules in a crystal change their structure in concert with one another, is common in biological molecules and metals. Such behavior, however, is rare in molecular crystals, and scientists don’t quite understand why. Now researchers using the Advanced Photon Source (APS), a U.S. Department of Energy Office of Science user facility at Argonne National Laboratory have found they can induce cooperative behavior in an organic semiconductor and have developed an explanation for why it happens.
Building organic electrochemical transistors in a new direction
Knowledge about colloidal gel formation and dissolution has implications for understanding the preparation and stability of many consumer goods such as milk and yogurt, and personal care products such as cosmetics. At the same time, more fundamentally, colloidal gels exhibit physical behavior that can help address challenging scientific problems such as the formation, stability, and dynamics of glasses. Studies by a research team utilizing high-brightness x-rays from the U.S. Department of Energy’s Advanced Photon Source provide important insight into a key question that has long puzzled scientists in the field, namely, why do nanoparticle gels take so long to form after a quench even though the constituent nanoparticles are rapidly diffusing through the suspension?
Findings based on research at the U.S. Department of Energy’s Advanced Photon Source are critical to our understanding of nucleation and growth dynamics, which underlie the desired properties and use of soft and hard materials in a variety of applications, including pressure sensitive adhesives, thermoplastics, microelectronics, and cardiovascular stents.
Slow Flow and Sudden Avalanches Relax Stress in Glasses: When familiar solids like metal, wood, or rubber are deformed, a consistent restoring force appears that pushes back against the deformation. Research at the U.S. Department of Energy’s Advanced Photon may guide new strategies for processing amorphous solids and could also provide new theoretical insights into the factors underlying their dynamic behavior.
The upcoming APS Upgrade makes the need for high-frame-rate detectors especially acute because the tremendous gains in coherent flux will, in principle, increase the best time resolution of XPCS by 4 orders of magnitude, allowing measurements of nanoscale fluctuations in aqueous environments such as those relevant to biochemical function.
Proteins of a Feather Come Together to Create Color: Biologists would like to understand how and why birds are brightly colored. Some materials scientists look to nature to find better ways to recreate such colors. A study conducted using the U.S. Department of Energy’s Advanced Photon Source points to possible answers to both those questions and represents the first directly self-assembled single gyroid crystals known to science, potentially opening new photonic technologies.
Measuring Cartilage Dynamics at Nanoscale: Researchers used high brightness x-rays at the U.S. Department of Energy’s Advanced Photon Source to advance our understanding of cartilage dynamics and demonstrate a valuable new research tool.
Relaxing with Soft Materials: A team of investigators used the U.S. Department of Energy’s Advanced Photon Source for their studies of the detailed microscopic dynamics of relaxation in a model soft gel, establishing a previously elusive connection between the rearrangement events occurring on the microscopic scale and the observable stress relaxation behavior on the macroscale.
8-ID-I, 9-ID-B,C
Structuring Liquids with Nanoparticle Assemblies: Assemblies of nanoparticles at the interface of two different liquids have potential for the creation of so-called structured liquids, which could be three-dimensionally printed and used for a variety of applications. Researchers using the Advanced Photon Source at Argonne National Laboratory studied how the behavior of such nanoparticles evolve as assembly takes place.
Probing the Diffusion of Active Viruses: Scientists using the research at the U.S. Department of Energy Office of Science’s Advanced Photon Source have shown that advances in the synchrotron coherent x-ray scattering technique allow for probing the dynamics of live viruses in an aqueous environment that closely mimics their biological surroundings, providing real-time information of their motions at a length scale similar to the virus size.
Colloidal glasses are suspensions of small solid particles in a liquid. When placed under stress, they transition from a solid-like to fluid-like state. These properties make colloidal suspensions, including emulsions, foams, and microgels, well-suited for a variety of applications such as spreadable foods and personal care products. Researchers used the Advanced Photon Source to learn more about the transition from recoverable to unrecoverable deformation in these materials.

The Dynamics and Structure (DYS) group specializes in the study of the interplay between structure, kinetics and dynamics in soft and hard condensed matter. The group operates two independent insertion device based feature beamlines: 8-ID, with two experimental stations 8-ID-E and 8-ID-I, and 9-ID, with one experimental station 9-ID-D.


8-ID-E is the APS-U feature beamline hosting the wide angle x-ray photon correlation spectroscopy program (WA-XPCS) that examines very low energy fluctuations in hard condensed matter. It is well suited for studies of metallic glasses, thin films, and novel materials such as complex oxides. The beamline detectors will enable XPCS experiments up to 25 keV, and speeds up to 56 kHz.

Beamline 8-ID-E is currently under construction and will be unavailable until the APS-Upgrade comes online in 2024.

Beamline 8-ID-E specifications


8-ID-I is the APS-U feature beamline hosting the small angle XPCS program that examines very low energy fluctuations in hierarchically ordered soft materials such as polymer nanocomposites and glassy colloidal suspensions. Temperature and sample composition are traditional independent variables but considerable flexibility is provided for user-supplied sample environments such as rheometers, strain cells and deposition chambers. High-gain, high-resolution increasingly fast area detectors are used for measuring the time series of speckle patterns. An efficient and user-friendly interface to APS high-performance computing (HPC) resources provides rapid data reduction. Work in this station is relevant to understanding the stability of novel forms of matter with ultimate application to the food and consumer products industries.

Beamline 8-ID-I is currently under construction and will be unavailable until the APS-Upgrade comes online in 2024.

Beamline 8-ID-I specifications


9-ID-D is the APS-U feature beamline dedicated to exploring materials at surfaces and interfaces with coherent x-ray scattering in grazing-incidence geometry. 9-ID-D hosts a program in Coherent Surface Scattering Imaging (CSSI), a new technique to determine the absolute structure of surfaces and interfaces. CSSI uses advanced phase retrieval algorithms to invert coherent scattering patterns and determine the structure of thin film materials. The technique relies on oversampling of the x-ray speckle pattern, enabled by the Grand Tube vacuum flight path, 2.75 m in diameter and 20 m long, with an in-vacuum Eiger 16M detector.

9-ID-D also hosts a program in nanoscale structure, kinetics and dynamics devoted to grazing incidence x-ray scattering (GIXS) measurements of the structure and processing kinetics of thin film materials. Measurements are made in both the wide-angle geometry (GIWAXS) (sensitive to molecular packing) and small-angle geometry (GISAXS) (sensitive to mesoscale ordering). A Pilatus 1M detector provides wide-angle time-resolved (> 10 ms) data collection, with the Eiger 16M capturing GISAXS data. A variety of sample environments are available for in situ measurements of films. Recent research at 8-ID-E is focused on correlating the structure of organic electronic thin films with performance parameters and probing defects in self-assembled block copolymers with applications to nanolithography.

Additionally, the in vacuum Eiger 16M detector enables grazing-incidence x-ray photon correlation spectroscopy (GI-XPCS) measurements to probe the dynamics of thin film materials over timescales from 0.001 to 1000 seconds.

Beamline 9-ID-D is currently under construction and will be unavailable until the APS-Upgrade comes online in 2024.

Beamline 9-ID-D specifications