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Introduction 
 
Inoperative mines contaminate surrounding ecosystems via 
transport of dissolved and particle-associated species of heavy 
metal(loid)s [1-4]. Efficient modes of contaminant transport in 
the environment are most commonly considered to occur within 
the dissolved phase. Recently, however, a number of field 
studies have implicated particle-associated transport of heavy 
metals in a variety of contaminated environments, most notably 
with respect to the colloid-associated transport of radionuclides 
in contaminated ground water systems [5-8]. Several laboratory-
based column studies have similarly demonstrated that common 
natural colloidal minerals, such as iron (oxyhydr)oxides and 
clays, can be efficiently transported through both saturated and 
unsaturated porous media [9-13]. As such mineral colloids often 
strongly sorb metal(loid) contaminants [14, 15], they may 
therefore act to mobilize metal(loid)s as they are transported. 
Indeed, a number of laboratory-based leach experiments on 
packed beds of natural mineral-based media such as soils and 
sediments have demonstrated significant colloid-associated 
transport of a variety of metal(loid) contaminants, including As, 
Cu, Pb, Pu, and Zn [16-21]. In this study, columns of an arsenic-
rich calcined mercury ore (i.e., calcines) have been leached with 
low molecular weight (LMW) organic acid solutions (containing 
oxalate and citrate in concentrations of 10–500 µM) in an 
attempt to simulate infiltration through the rooting zone of 
revegetated mine tailings, addressing (1) the physicochemical 
conditions under which colloids may be mobilized, (2) the 
speciation of arsenic in mobilized colloids, and (3) the extent of 
colloidal arsenic transport. 
 
Methods and Materials 
 
Unconsolidated calcines were collected from piles at the Sulphur 
Bank Mine site (Clearlake Oaks, CA). A geochemical 
description of this site is given elsewhere [22].  The calcines 
represent ore-containing rocks that were previously crushed and 
heated to approximately 700°C to remove Hg.  The mine waste 
used in this study was obtained from the interior of a tailings 
pile (i.e., after discarding the outer layer of material in order to 
minimize the effects of weathering).  It was then passed in dry 
form through a 2-mm sieve, with the <2 mm fraction being 
retained for use in column experiments. 

Calcines were loaded and manually tamped into pre-weighed 
25 mm by 500 mm plexiglass columns. An electrolyte solution 
containing 10mM NaCl and 1mM sodium azide (NaN3, a 
bacterial sterilant) was pumped upwardly through the column at 
1.0 mL/min, leaching approximately 13 pore volumes of fluid 
per day. The upward flow configuration served to minimize 
gravity-induced flow preference. The columns were capped 
upon completion of the first flush of water, reweighed, and the 
column pore volume (typically about 110 mL) estimated 
gravimetrically from the masses of the air-dry and water-
saturated column.  In all cases, the  porosity of the calcine 
columns was found to be 0.44 ± 0.02. 

Column leaches were performed in two stages. The column 
was first leached with at least 25 pore volumes of electrolyte 

solution (10 mM NaCl and 1 mM NaN3) at pH = 5.7 ± 0.1. 
During this electrolyte throughput, most of the exchangeable 
Mg2+ and Ca2+ in the mine waste was rapidly replaced by Na+ 
from the influent. This initial leaching step therefore helped 
ensure reproducibility of replicate column experiments to the 
extent that exchangeable cations impacted colloid transport.  It 
also served to demonstrate the absence of any detectable particle 
mobilization in the absence of LMW organic additives.  The 
second leaching stage consisted of a solution containing both 
oxalate and citrate (in concentrations of 10 - 500µM each) in 
addition to 10 mM NaCl and 1 mM NaN3. Such influent 
solutions were again pre-adjusted to pH = 5.7 ± 0.1.  In both 
leaching stages, a fractional sampler was utilized to 
continuously collect effluent discharged from the column.  The 
effluent samples were regularly transferred to capped 
polypropylene tubes that were stored in the dark at 4°C. The 
effluent pH was periodically monitored using a Denver 
Instrument model 215 pH standardized with commercial pH 
buffers. 

Arsenic speciation of the Sulphur Bank calcine and colloids 
eluted during a 500 µM organic acid leach experiment was 
performed using As K-edge extended X-ray absorption fine 
structure (EXAFS) spectroscopy on bending-magnet beam 
station 13-BMD at the Advanced Photon Source (APS). To 
obtain a useable range of As EXAFS (i.e., beyond k = 10.5 Å-1), 
interference of Hg Lα fluorescence with As Kα fluorescence 
measurements was minimized through enhanced energy 
resolution. Higher resolution was achieved by lengthening the 
shaping time of DXP digital electronics used to measure 
currents induced by fluorescent photons received by the 16-
element Ge detector. High concentrations of Hg in the samples 
(~1,000 ppm) also caused sample self absorption and/or Ge 
detector deadtime, requiring correction of all As EXAFS 
spectra.  

XAFS data were processed according to standard procedures 
[23] using IFEFFIT [24] via the Sixpack interface (http://www-
ssrl.slac.stanford.edu/~swebb/). Quantitative Hg speciation in 
these samples was accomplished by least squares linear 
combination fitting of the EXAFS spectra of the calcine material 
and colloid samples with one or more reference EXAFS spectra 
of homogeneous As-bearing minerals and a ferrihydrite 
adsorption complex. After fitting an unknown spectrum with 
one reference spectrum, a second reference spectrum was added 
in the fitting procedure. The second species was operationally 
defined to be significant if its inclusion resulted in a ≥10% 
improvement in reduced χ2, which is defined as 
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Once the number of significant components had been identified, 
the fitting procedure was repeated with the added constraint that 
the components sum to 100 percent. The accuracy of speciation 
provided by this method is contingent upon the uniqueness of 
component EXAFS spectra, the completeness of the spectral 
library, evaluated by how close to 100 percent the sum of fitted 
components are (without restricting their sum to equal 100 per 
cent), and the recoverability of a single species within 
heterogeneous samples, estimated to be 10% [25, 26]. 
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Results and Discussion 
 
For all organic solution concentrations investigated, colloid-
associated arsenic was mobilized, with the onset of particulate 
arsenic transport occurring later for lower LMW organic acid 
concentrations (Fig. 1). 
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Fig. 2. Release of arsenic during leaching of a packed column of 
mercury mine tailings. 
 

The EXAFS spectra of reference compounds and mine-related 
materials are illustrated in Fig. 3, revealing the presence of 
As(V)-Fe(oxy)hydroxide surface complexes or coprecipitates 
and As(V)-substituted jarosite (KFe3(SO4,AsO4)2(OH)6) species 
in both the mine calcine and colloids mobilized during leaching 
experiments. 
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Fig. 3. XAFS spectra of the arsenic minerals (a) scorodite, (b) 
As(V)-substituted jarosite, and (c) As(V) adsorbed to 
ferrihydrite, which partially comprised the reference spectral 
database used for least squares linear combination fitting; (d) 
<45 µm size fraction of mine tailings, and (e) colloids eluted 
during a column leaching experiment (experimental data appear 
as dotted lines while solid lines are the linear combination fits). 

Fig. 1. Particle concentration and cummulative mass release 
over time, (a) 500 µM organic acid leach and (b) 10 µM organic 
acid leach. Vertical error bars represent 95% confidence 
intervals while horizontal bars indicate the extent to which 
column leachate was composited for each sample. 
  Chemical analysis of eluted colloids and 0.02-µm filtrates of 
column effluent indicated that over the timeframes of the 
column experiments (1 week to several months), all measurable 
arsenic mobilized from the column was in particulate forms 
(Fig. 2). 

The results presented in this study are of particular potential 
relevance to revegetated mine tailings environments.  
Revegetation is a common strategy in such settings in order to 
hinder erosion [27]. However, when exposed to toxins such as 
dissolved Al, which is prevalent under the acidic conditions 
typical of mine tailings environments [28], plants commonly 
exude organic acids such as citrate into the rhizosphere as a 
defense against Al phytotoxicity [29]. Chemical conditions that 

 



render colloidal mine tailings materials susceptible to 
mobilization when exposed to appropriate physical conditions 
(e.g., periods of intense rainfall) are therefore conceivable in 
revegetated mine tailings environments. Consequently, the 
transport of colloid-associated arsenic from revegetated mercury 
mine tailings sites may be environmentally harmful in certain 
locations where small, populated water bodies are 
hydrologically proximate to those sites. 
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