# The Study of Oxygen at High Pressure Using Inelastic X-ray Scattering 

Y. Meng ${ }^{1,2}$, H.K. Mao ${ }^{2,1}$, P. Eng ${ }^{3}$, J. Shu ${ }^{2}$<br>${ }^{1}$ HPCAT, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439<br>${ }^{2}$ Geophysical Laboratory, Carnegie Institution of Washington, Washington D.C., 20015<br>${ }^{3}$ GSECARS, University of Chicago, Chicago, Illinois 60439

Oxygen undergoes a series of phase transitions when compressed at ambient temperature. Using inelastic x-ray scattering, we measured the K-edge spectra of $\mathrm{O}_{2}$ from 10 GPa to 34 GPa to study the electronic bonding changes at the phase transitions. High purity oxygen was loaded into the sample chamber in an x-ray transparent beryllium gasket compressed in a diamond anvil cell (DAC). Pressure was calibrated based on ruby fluorescence scale ${ }^{1}$. IXS spectra were collected at station 13-ID-C of the GeoSoilEnviro Consortium for Advanced Radiation Sources (GSECARS) at the Advanced Photon Source. With a focused undulator beam to $50 \times 15 \mu \mathrm{~m}$ at the sample, IXS measurements were performed by scanning the incident beam energy from 525 to 565 eV above the analyzer elastic scattering energy of 9.6865 keV . Scattered x-rays at the elastic energy were collected with a six-element $\operatorname{Si}$ (660) analyzer, positioned on the spectrometer 2-theta arm at a scattering angle of $18^{\circ}$, and reflected by the analyzer crystals in a near back-scattering (Bragg angle of $89^{\circ}$ ) geometry to a focused spot on an AMPTEK Si detector. The combined energy resolution of the experimental instrument is approximately 1 eV . An improved signal to background ratio was achieved by using a post-sample slit at the 2-theta angle to discriminate the single along the beam direction. Our results reveal a pressure-induced electron charge transfer into the half-filled $1 \pi_{\mathrm{g}}$ orbital of $\mathrm{O}_{2}$ molecules. The high-pressure $\varepsilon$ phase displays strong intermolecular interactions; however, the half-filled $1 \pi_{\mathrm{g}}$ orbital is not filled at pressures well within the stability region of the $\varepsilon$ phase.

