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Introduction
The coherent x-ray beam produced by the APS makes

the measurement of 3-D coherent x-ray diffraction (CXD)
patterns practical. Such patterns generated by a small,
single crystal contain sufficient information to support the
use of iterative algorithms to recover the 3-D diffracting
density [1]. By using a Bragg reflection geometry, no
special care needs to be taken to block the direct beam,
and the sample needs to be rocked only a small amount to
move the 3-D diffracted intensity through the 2-D
detector. Additionally, higher-order Bragg peaks may be
used to enhance the sensitivity to strain within the sample,
promising the possibility to image strain within the
sample in 3-D.

Methods and Materials
The sample discussed here is a Pb film, heated in vacuo

to form single crystals less than 1 µm in diameter. The
coherent diffraction hutch at sector 34 at the APS has
been used to prepare the sample and measure diffraction
near a {111} Bragg peak of such crystals. To acquire a
3-D pattern, the sample is rocked through the Bragg
condition, and the resulting diffraction is measured with a
2-D charge-coupled device (CCD) detector, where sample
rotation moves the diffracted intensity through the
detector, providing the third dimension.

Since the measurement is one of intensity and not
amplitude, it must be oversampled (Fig. 1). This is

FIG. 1. The measured intensity must be sampled at the
Nyquist frequency of the autocorrelation, at least twice as
finely as the Nyquist rate for sampling the amplitude.

required because in order to invert a complex signal, it
must be measured at the Nyquist frequency.

The actual intensity measurement is of the
autocorrelation of the complex amplitude; therefore, we
must oversample the intensity measurement to obtain
enough information to reconstruct the amplitude we seek
to invert, resulting in a 3-D density map in real space.

Once we have made the oversampled measurement, we
rely on iterative algorithms to find the phase set that is
consistent with the measured intensity. This is a difficult
problem, but in two and higher dimensions, a unique
solution should exist. The primary algorithm used is
Feinup’s error reduction [2], illustrated in Fig. 2. We

FIG. 2. A schematic diagram of the error reduction algorithm. Each fit begins with a random phase set and is iterated until a
satisfactory solution is found.



begin each fit with a set of random phases and a finite
support region, which is derived from knowledge about
the sample (e.g., the crystal is compact in real space).
A fast Fourier transform (FFT) is applied to this density,
and we constrain the magnitudes of the reconstructed
diffraction amplitudes to be those that were measured.
The prospective solution is transformed back to real space
by an inverse FFT, where it is constrained to have no
phase gradient (since the crystal is expected to be
unstrained) and to be compact. This set of densities is
then transformed back to reciprocal space, and the cycle
is repeated until a satisfactory solution is reached. The
progress of the fit is recorded by the average rms error per
pixel calculated with the reconstructed complex
amplitude and the measured diffraction data during each
iteration.

Results
Once the measured magnitude of the diffracted

amplitude is phased, the complex diffraction amplitude
can be readily transformed to a real space density by
means of one last FFT. The result of several hundred
iterations of the algorithm described above, applied to
2-D data, is shown in Fig. 3, with the original measured
2-D CXD pattern. In 3-D, the full 3-D CXD pattern is
measured, which results in a 3-D real space density. In
2-D, one slice through the 3-D diffracted amplitude is
recovered, and the transformation to real space is a
projection of the density of the diffracting crystal onto a
plane determined by the choice of the 2-D slice extracted
from the 3-D CXD pattern.

The reconstructed real space density reveals a crystal
with dimensions projected to be 1 µm by 0.6 µm, well
within the range of crystal sizes shown to exist by ex situ
scanning electron microscope (SEM) measurements. For
the data shown in Fig. 3, the sample is held near the
melting point in an attempt to understand melting
behavior in small crystals.

Discussion
As mentioned above, the progress of the iterative

fitting is monitored by calculating an rms error per pixel.
For the fit shown in Fig. 3, this mean error per pixel is
10%. Examination of the original CXD pattern shows a
background level of one to two photons per pixel, well
away from the diffraction pattern itself. This is probably
caused by liquid scattering that originates from smaller Pb
crystals on the sample, which have lower size-dependent
melting points. Additionally, the circular region of zero
intensity is the result of removing the diffraction from a
different crystal from this CXD pattern. Finally, the slight
density gradient within the crystal is unexpected and may
be an artifact from the partial coherence of the incident
x-ray beam.

FIG. 3. Top a: 2-D slice through 3-D CXD pattern.
Middle b: Reconstructed diffracted amplitude. Bottom c:
Resultant real space density projected onto a plane
through the crystal. The rms error between the data and
the reconstruction is 10%.
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