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Introduction
Complex fluids like polymers have a rich linear

viscoelastic behavior [1-3]. Typically, these systems
display several time-scale and length-scale regimes for
the viscoelastic properties. For a full understanding of the
mechanical properties of these systems, it is necessary to
measure their viscoelastic properties over large length and
time scales. Since the typical length scales of polymers
vary from a monomer size (a few Å) to their end-to-end
distance (typically a few hundred 100 Å), one can use
small probe particles, like colloids, to probe their
rheological properties. X-ray fluorescence correlation
spectroscopy (XFCS)  a recently developed technique
[4] — makes it possible to measure the diffusion
coefficient and the mean squared displacement (MSD) of
individual particles by using a microfocused x-ray beam
to illuminate the colloid-polymer system.

Materials and Methods
XFCS is a new technique used to study the dynamics of

particles in solution by measuring the intensity
autocorrelation of the fluorescence signal from the probe
particle (Fig. 1). The intensity is proportional to the
number of particles in the illuminated volume; thus, its
fluctuation probes the fluctuation in the average number
of particles <N> and hence the particle dynamics. Small
concentrations of probe particles and a small illuminated
volume are required since the fractional rms fluctuation in
the number of particles in a given volume, for an
assembly of noninteracting particles, is <N> (-1/2). The
intensity autocorrelation function gf (t) of the
fluorescence, when a Gaussian incident beam profile is
assumed, can be written as follows:

gf (τ) = <If (t)If (t + τ)> / < If (t)>2

          = 1 + <N>-1(1 + τ/τD)
          = 1 + <N>-1{1/1 + ∆r2[τ/(6σ2)]} ,

where If (t) = fluorescent intensity at time t, τD = σ2/Dt, Dt
= KBT/6πηR, and ∆r2 = the MSD of fluorescing particles.
Here Dt = the translational diffusion coefficient, σ = the

FIG. 1. Schematic of XFCS setup.

half-width, half-maximum (HWHM) beam size, η = the
effective viscosity experienced by the particles, and R =
the effective hydrodynamic radius of the particles.

The experiments were performed at the APS 2-ID-D
beamline. The incident beam was monochromatized to
12.7 keV, and a zone plate with diameter of 150 µm and
thickness of 2 µm (outermost zone width = 0.1 µm, focal
length = 15 cm) was used to reduce the beam size (2 σ) at
the sample position to 0.2 µm. Gold L α = 9.7 keV
fluorescence, from the gold colloidal probe particles, was
detected by using an energy-dispersive Ge detector.
Colloidal gold with a volume fraction of 10-4 and a
nominal mean particle diameter of 40 nm was used as
purchased from ICN Biomedicals. Also used was
0.09 g/mL of polyethylene oxide (PEO) of mol wt 100K
(Sigma-Aldrich). The radius of gyration and entanglement
length ( ξ) for this mol wt and concentration of PEO are
11 nm and 19 nm, respectively. See Fig. 2.

Conclusions
Colloids in polymer solution show three clearly

different regimes of diffusive behavior corresponding to
the different time-scale and length-scale dependencies of
the viscoelastic properties of the polymer. These could be
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FIG. 2. Fluorescence intensity autocorrelation gf (τ) vs.
time delay τ  for 40 nm of colloidal gold particles in water
and 0.09 g/mL PEO solution in water. The solid line is a
fit by using the equation in the text.

classified as (1) normal (or Stokes-Einstein) with a slope
of ~1 in Fig. 3, (2) subdiffusive with a slope much smaller
than 1, and (3) superdiffusive with a slope greater than 1.
In water, on the other hand, the colloids show mostly
normal diffusive behavior over the same range of time
scales as those for the colloids in polymers. This clearly
shows the length-scale dependence of the viscoelastic
behavior of complex fluids like polymers when compared
with simple liquids like water. Future work would focus
on studying the viscoelastic properties of polymer
solutions by varying their concentrations to change the
relative size of the mesh and the probe colloidal particles.
We also plan to more systematically study the possibility
of anomalous diffusion behavior [5] and carry out a
Laplace transform scheme on the obtained MSDs to
extract detailed frequency (ω) dependent complex shear
modulus G*(ω) [6].
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FIG. 3. MSD ∆r2(τ) vs. time delay τ for 40 nm of colloidal
gold particles in water and 0.09 g/mL of PEO solution in
water. Note that normal Stokes-Einstein diffusion predicts
a slope of 1.
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