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Everybody knows that in our days more than ever before a man or a woman who
wishes to make a genuine contribution to the advancement of science has to specialize:
Which means to intensify one's endeavor to learn all that is known within a certain
narrow domain and then to try and increase this knowledge by one's own work|by
studies, experiments, and thinking. Being engaged in such specialized activity one
naturally at times stops to think what it is good for. . . .

You may ask|you are bound to ask me now: What, then, is in your opinion the
value of natural science? I answer: Its scope, aim and value is the same as that of
any other branch of human knowledge. Ney, none of them alone, only the union of
all of them, has any scope or value at all, and that is simply enough described: it is
to obey the command of the Delphic deity, ��!�� �"���o�, get to know yourself.

|Erwin Schr�odinger, Science and Humanism|Physics in Our Time
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Chapter 1

Introduction

Vibrational properties of solids is an important part of our understanding of materials.
There are well established experimental techniques to investigate these properties,
inelastic thermal neutron scattering, Raman and infrared light scattering, inelastic
X-ray scattering. Neutron and light scattering took advantages of the developments
in nuclear and laser technologies. Synchrotron radiation, growing out of particle
accelerator technologies by the demands of researchers in condensed matter physics
and materials science, proves to be an essential tool today and for the future. The
intense and collimated beam from synchrotron storage ring makes inelastic X-ray
scattering possible. The application of nuclear resonant scattering with synchrotron
radiation also provides a new method to study lattice dynamics, and this is the
main topic of this thesis. As we will discuss later in detail, this inelastic nuclear
resonant scattering (INRS) technique has element selectivity, is able to provide energy
spectrum of vibrational modes as well as integrated lattice vibrational properties,
such as the recoilless factor and mean kinetic energy per atom. It works with small
amount of materials, so is suitable to study impurities, thin �lms, interfaces, and
samples under arti�cial high pressure. It is a unique and complementary technique
for vibrational dynamics studies.

Soon after the discovery of M�ossbauer e�ect [1], it was realized that it is a powerful
technique in studying properties of materials. M�ossbauer spectroscopy is a common
technique now to probe local electronic and magnetic environment of resonant iso-
topes. In 1974, Ruby suggested using synchrotron radiation to excite nuclei [2].
Gerdau et al., in 1985, made the �rst unambiguous observations of synchrotron X-
rays resonantly scattered from 57Fe nuclei [3]. Since then, the �eld of nuclear reso-
nant scattering using synchrotron radiation has been progressing rapidly [4]. Nuclear
forward scattering and nuclear Bragg scattering were observed and studied at syn-
chrotron sources. Nuclear forward scattering can be regarded as the counterpart of the
conventional M�ossbauer spectroscopy in time domain. In principle it provides similar
information as does M�ossbauer spectroscopy. However, to interpret time spectrum
for complicated system is not a trivial matter.

One problem in nuclear forward scattering experiment is the overwhelming
prompt radiation at synchrotron sources. Since the nuclear resonant level is very
narrow, typically on the order of neV , only a tiny portion of the incident beam is
contributing to the resonance signal and the rest of it causes enormous background.
This prompt radiation is the result of various electronic processes which are much
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faster than nuclear resonance commonly used in such studies. It saturates detectors
and prevents detecting signals in the early part of time spectrum. The solution is
to develop high resolution X-ray optics to cut down incident energy bandwidth from
eV s to meV s [5, 6, 7] in conjunction with the use of detectors having large dynamic
range [8, 9, 10]. This development eventually paved the way to inelastic nuclear reso-
nant scattering (INRS). In 1995, using a monochromator having 6.7 meV resolution
at 14.4 keV , Seto et al. �rst observed the phonon excitation spectrum of a polycrys-
talline �-Fe foil [11]. Shortly after, partial phonon density of states were extracted
for several iron compounds [12].

In contrast to M�ossbauer spectroscopy, inelastic nuclear resonant scattering ex-
ploits nuclear resonant absorption with recoil to reveal vibrational dynamics of the
resonant isotope. When the low-lying nuclear level of a particular isotope in a crystal
is excited by external -radiation, the resonant energy is modi�ed by the interaction
between the resonating nuclei and its environment. That interaction can be separated
into two parts. One is the hyper�ne interaction which modi�es the nuclear levels.
The resulting corrections to the nuclear level of a single nucleus are on the neV energy
scale. The other part is the binding forces in the lattice, which determines lattice
vibrations and has energy on the order of meV. Because the nuclear force is much
stronger than the binding force of a crystal, the nuclear states are decoupled from
the lattice vibrational states. The resonant energy can be regarded as a summation
of two parts, the nuclear part is the energy di�erence between the nuclear ground
state and the nuclear excited state, the lattice part is the change in the kinetic and
cohesive energies of the nuclei, which we can refer as lattice energy. Since the excited
nuclear level is very narrow on the energy scale of lattice vibrations, it provides a well
de�ned reference and can be used as a probe to study the lattice energy of the nucleus
when resonance occurs. The nuclear part of resonant energy can be determined as
the energy of resonance when the lattice energy of the nucleus does not change and
it is a constant part of resonant energy. Thus by monitoring the resonant energies,
we can �nd the energy transfer between photon and the lattice, which then reveals
the energy states of the lattice.

There are three very di�erent energy scales involved in such experiments. The
nuclear resonant energy which is on the order of 10 keV (for 119Sn it is 23.880 keV ),
the Debye temperature of lattice which is on the order of 100 meV , and the excited
nuclear level linewidth which is on the order of 10 neV (for the 23.880 keV level
of 119Sn, it is 25.6 neV ). In principle, the very narrow nuclear resonance linewidth
provides excellent precision in the studies of vibrational states of materials, even for
very low energy excitations. However, unless we wish to study low energy lattice
excitations, we do not need such a �ne probe in lattice dynamics studies. Usually
meV or sub-meV resolution is suÆcient compared with the typical Debye temper-
atures. If we can obtain an X-ray beam with meV energy resolution and use it to
scan a phonon spectrum, then the overall energy resolution of our experiment will
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be just that of the incident beam, since the nuclear resonant level linewidth is neg-
ligibly small on this scale. If we think of nuclear resonance as the analyzer in such
experiments, its perfect resolution allows us to achieve wanted energy resolution by
monochromatizing the incident beam only, not worrying about the analyzer optics.
On the other hand, the resonant energy, i.e., the energy of X-rays we need to work
with, is very large compared with the energy resolution in such studies. Thus high
degree of monochromatization of hard X-rays is required.

The idea of using nuclear recoil to study lattice dynamics had already been pre-
sented in early 1960's [13, 14]. But it was impossible to realize in experiments. To
perform such experiments, one would require an X-ray source with adequate spectral
ux in meV bandwidth and not too big beam size at sample. It also needs to be
tunable to provide enough energy di�erence to scan phonon spectrum. There was
no such source until synchrotron radiation became available. Its superior brightness
(photons per solid angle per eV per second) over the conventional X-ray generators
and radioactive sources made enough room to develop X-ray optics for monochrom-
atization. Today, silicon monochromators can be made to provide a hard X-ray
beam with meV bandwidth and a tunability range over a hundred eV . That is a
monochromatization of 10�7 of hard X-rays.

Another requirement for inelastic nuclear resonant scattering experiments is the
time structure of the source. Since nuclear resonance has characteristic lifetime, tim-
ing is needed to distinguish it from electronic processes and enough time separation
must be allowed between excitations of nuclei in order to observe nuclear excitations
through their decays. Synchrotron radiation is a pulsed source and �ts in naturally.
Electrons or positrons in a storage ring are bundled in bunches and put into selected
places among a discrete set of buckets determined by the storage ring RF frequency.
By �lling the storage ring in di�erent patterns, i.e. �lling selected buckets only,
one can chose di�erent time structures of incident radiation. The �lling pattern one
would need for nuclear resonant scattering experiments is a separation of about 100
- 200 ns between adjacent bunches, since the isotopes mostly used have lifetime on
the order of 10 - 100 ns. In addition, each pulse length must be signi�cantly smaller
than the lifetime of nuclear resonant isotopes so that electronic scattering and nuclear
resonance can be distinguished as prompt and delayed radiation respectively. This
is also satis�ed at the third generation synchrotron facilities, where the pulse length
from each bucket is about 100 ps. By using timing technique to look for delayed
signals only, one can achieve very good signal-to-noise ratio even for experiments in
which the samples have a low concentration of resonant isotopes. The high signal-
to-noise ratio allows one to extract from data the higher order contributions such as
multi-phonon processes.

This thesis is concerned with the application of inelastic nuclear resonant scat-
tering method, particularly for 119Sn. A detailed study of INRS with synchrotron
radiation in general is given in the �rst chapter, where we start with nuclear resonant
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cross section to explain what is measured in such experiments. Then data analy-
sis procedure is described for extracting information from measured spectra. Count
rate estimate is also given for establishing the feasibility and planning of experiments.
The monochromator development at its resonant energy 23.88 keV is a necessary and
important part of realizing INRS experiments for 119Sn. By extending the design of
high resolution monochromator at lower energy, we have developed the capability of
1 meV resolution for 24 keV X-rays. A description of the monochromators and their
operation is given in Chapter 3. Then in the next chapter, we present results of INRS
measurements of several tin materials and compounds. They are more of a demon-
strative nature to show the capabilities and limits of this method. More systematic
and dedicated experiments are needed to investigate questions in condensed matter
physics and materials science. Finally, we will point out a few future developments
and applications in the last chapter. This work was done at the Advanced Photon
Source (Argonne, Illinois) Sector 3 undulator beamline, which is dedicated to high
resolution X-ray scattering.



Chapter 2

Inelastic Nuclear Resonant Scattering

When an X-ray beam with energy close to the nuclear resonant energy of a particular
isotope impinges on a material containing that isotope, part of the incident radiation
will be absorbed by some of the isotopes which are then excited to a higher nuclear
level. Such absorption process has a very large cross section as compared to elec-
tronic scattering (see Table 2.1). It was M�ossbauer's discovery that this absorption
process can happen with an appreciable probability, the so called f -factor, in solids
when the incident photons have exactly the same energy as the nuclear resonant
energy [1]. This recoilless absorption makes it possible to study hyper�ne structure
of nuclear ground level and excited level, which sometimes is called the M�ossbauer
level. Conversely since the hyper�ne structure of a nucleus is inuenced by its local
electronic and magnetic environment, given the nuclear moments one can use this
recoilless absorption { the M�ossbauer e�ect { to probe electronic and magnetic struc-
ture of materials. It has become a common technique in material characterization
and studies.

It was also studied that the absorption with recoil is determined by the lattice
dynamics of the material [13, 14]. This inelastic absorption spans a large energy
range centered at the resonant energy. The range is estimated by the Debye temper-
ature of material. So the probability density of absorption with recoil is rather small,
(1�f)=2�D, compared to that of recoilless absorption, which is f=�. Typically, �D is
about six orders of magnitude larger than �. With conventional radioactive sources,
whose energy bandwidth is on the order of �, the lattice dynamic contribution is
negligible. With synchrotron radiation, the energy bandwidth of X-ray beam can be
manipulated by X-ray optics, and meV bandwidth can be achieved with high reso-
lution monochromators. This resolution is appropriate for lattice vibration studies.
The high brightness of 3rd generation synchrotron sources facilitate enough photon
ux in this bandwidth so that the inelastic absorption signals are quite measurable.

In this chapter, after a brief description of nuclear resonant isotope 119Sn, we will
calculate the cross section for inelastic nuclear resonant scattering (INRS) and the
intensity we expect in such experiments. Data analysis procedure is also outlined.

2.1 Nuclear Resonance of 119Sn

Among all the M�ossbauer isotopes, 119Sn is one of the most used. This is particularly
true for nuclear resonant experiments at synchrotron sources. Because its resonant
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Table 2.1: M�ossbauer isotopes whose nuclear resonance has been observed
at a synchrotron source. E0 is the resonant energy, � the natural linewidth
of the level, t1=2 the half-life, � the internal conversion coeÆcient, �0 the
maximum nuclear resonant absorption cross section, ER = E2=2Mc2 the
recoil energy, and A the natural abundance of the isotope.

isotope E0 � t1=2 � �0 ER A year and

(keV ) (neV ) (ns) (10�20cm2) (meV ) (%) reference

57Fe 14.4125* 4.66 97.8 8.21 256 1.96 2.14 1985 [3]

169Tm 8.401 114 4.0 291 23.7 0.224 100 1991[17]

119Sn 23.880y 25.55 17.86 5.12 140 2.57 8.58 1993 [15]

83Kr 9.40 3.10 147 19.6 108 0.571 11.55 1995 [18, 19]

181Ta 6.238 0.067 6800 80 94 0.115 99.988 1995 [20]

151Eu 21.542z 47 9.7 28.6 23.8 1.65 47.82 1997 [21]

161Dy 25.655 16.2 28.2 2.9 95 2.19 18.88 1997 [21]

* by Yu. V. Shvyd'ko, 1999.
y by E. E. Alp et al., 1993.
z by O. Leopold, 1996.

energy is not too high so that there is eÆcient optics to handle X-rays at this energy.
Its lifetime is not too short so that it can be distinguished from prompt scattering,
and is not too long either so that with certain �lling patterns of the storage ring all
the excited nuclei essentially have decayed and are back in the ground state before
the X-rays generated by the next bunch arrive. The �rst 119Sn nuclear resonance at
a synchrotron source was observed in 1993 [15]. Since then, the optics developments
at several synchrotron sources have made this isotope an easily accessible one. This
thesis is part of the e�ort to provide this capability. In Table 2.1 we list nuclear
resonant isotopes that have been used with synchrotron sources [4]. Their resonant
properties are taken from reference [16], unless otherwise indicated.

119Sn is a stable isotope of Sn with natural abundance of 8.6%. The ground
state is 1

2

+
. The �rst excited state is 3

2

+
. It is a M�ossbauer level, with excitation

energy E = 23:880keV , lifetime � = 25:6ns. The natural linewidth of this level
is � = 25:6neV . The internal conversion coeÆcient � = 5:12, the energy of the
conversion electron is about 19.4 keV . The internally converted electron is from the
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L atomic shell instead of K-shell since the binding energy for K-electron is 29.2 keV .
Because of the low L-uorescence yield, !L = 0:07, for one nuclear uorescence -ray
(23:88keV ) there is only 0.36 atomic uorescence X-ray (about 3.5 keV ). The next

excited level is 11
2

�
, with E = 89:5keV , half-life t1=2 = 245 days. There is no transition

from this level to ground level 1
2

+
. However, it decays to the M�ossbauer level by

internal conversion most of the time (the internal conversion coeÆcient � = 1860).
The maximum nuclear resonant absorption cross section is an important charac-

teristic number for nuclear resonant processes. Later we will see that the measured
intensity is proportional to this number. It is given [22] by

�0 =
�2

2�

2I + 1

2I0 + 1

�R
�

=
2�

1 + �

 
�hc

E0

!2
2I + 1

2I0 + 1
; (2.1)

where � is the wavelength, I and I0 are the spins of the M�ossbauer level and ground
level respectively, �R is the partial linewidth due to gamma-decay, while � is the
total natural linewidth.

2.2 Inelastic Nuclear Resonant Scattering Cross Section

Nuclear resonant absorption is measured by detecting nuclear decay events follow-
ing the absorption. The decay channels include nuclear uorescence which has en-
ergy close to the transition energy, electrons ejected by internal conversion process,
and atomic uorescence following the electron ejection. Due to strong scattering of
electrons inside material, only the internal conversion electrons come from near the
surface can be observed. So in most cases, we are only looking for photons as decay
products. The intrinsic relative intensity between nuclear and atomic uorescences is
determined by internal conversion coeÆcient and atomic uorescence yield. However,
due to the di�erent energies of nuclear and atomic radiations, there is a di�erence in
detection eÆciencies for each channel, which mainly involves their electronic absorp-
tion lengthes in the sample, in the detector window material, and detector eÆciency
for di�erent energy photons.

The isotopes often used have large internal conversion coeÆcients, thus they are
more of absorbers than scatterers. So, often we can see more atomic uorescence than
nuclear uorescence. 57Fe is an example, for which the internal conversion channel
makes bigger contribution than the radiative channel. With an internal coeÆcient of
8.21 and K-uorescence yield of 0.347, there are 2.85 atomic uorescence photons for
every nuclear uorescence photon. The total electronic absorptions of both nuclear
(14.413 keV ) and atomic uorescences (about 6.4 keV for K-uorescence) are about
the same by Fe atoms1. So they have about same chance to escape the sample if iron

1The Fe atomic absorption cross section is 5870 barn for 14.413 keV and 6413 barn for 6.4 keV .
Fe has K-edge at 7.112 keV .
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dominates in the sample. Detector eÆciency is higher for the lower energy atomic
uorescence. In 57Fe INRS experiments, the 6.4 keV radiation, i.e., the internal
conversion channel dominates the delayed signals.

The situation is di�erent for 119Sn. As discussed in Section 2.1, there is only
about one third atomic uorescence photon for every nuclear uorescence photon
from nuclear decays. In addition, the atomic uorescence has an energy of about
3.5 keV which is more strongly attenuated in the sample. So generally in 119Sn
INRS experiments we are detecting the radiative channel.

The internal conversion channel is completely incoherent, since the atomic con-
�guration is changed by the decay process at the atom where nuclear decay happens.
For radiative channel, there are coherent elastic scattering processes, including nu-
clear forward scattering (NFS) and nuclear Bragg scattering (NBS), which are the
subjects of intensive studies [4]. However, when the incident photon is absorbed
inelastically, phonon is created or annihilated and the lattice is driven away from
thermal equilibrium. Since nuclear decay is a slow process comparing to lattice vi-
brations, as it happens about 10 or 100 ns after the excitation, while lattice vibrations
have a time scale on the order of ps. So, by the time the excited nucleus decays, the
lattice is already back to thermal equilibrium and cannot stay in the state right after
the absorption. It is in this sense we say that nuclear decay is decoupled from in-
elastic absorption. So if we count all nuclear decay events without doing energy and
momentum analysis, as it is done in INRS experiments, the problem becomes absorp-
tion instead of scattering. The spectrum measured in this way is then described by
the absorption cross section calculated by Singwi and Sj�olander [14]. In the following
paragraphs, we will give this derivation. A comprehensive study of incoherent nuclear
resonant scattering in the frame of QED can be found in Ref. [23].

Since nuclear interaction is much stronger than lattice forces, the total wave func-
tion can be factorized with one factor depending only on the centers of mass of all
nuclei, which represents the lattice states, and the other one depending on relative
nucleon coordinates inside a nucleus, which represents the nuclear states. Let j�i
represent lattice state of the scattering system, then the transition matrix element
for photon absorption is

M� = a h�f jei~k~r� j�ii ; (2.2)

for the �-th nucleus in the lattice, where ~r� is its coordinate and ~k is the incident
photon wave vector. It describes a sudden momentum transfer of �h~k to the lattice.
The initial lattice state j�ii has a distribution governed by the statistical weight factor
gi at certain temperature. The factor a is a constant related to nuclear transition.

By Fermi's Golden Rule, the absorption cross section can be expressed in terms
of transition matrix element. For a collection of resonant isotopes in the sample, the
cross section is simply the sum over all resonant nuclei, provided that the incident
beam is not too strong so that only one photon is absorbed. This is because inelastic
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single photon absorptions by individual nuclei are independent. Later on we will show
that the single photon absorption requirement is satis�ed with today's synchrotron
storage ring. The cross sections are obtained by summing over all possible excited
states j�fi, and averaging over initial states j�ii,

�(E;~k) =
�0�

2

4

X
i;f

gi
1

N

X
�

���D�f jei~k~r� j�iE���2
(E + "i � "f � E0)2 + �2=4

(2.3)

where �0 is the nuclear resonant absorption cross section (Eq. 2.1) and E0 is the
nuclear resonant transition energy. "i and "f are energies of initial and excited lattice
states respectively. N is the total number of resonant isotopes.

If we replace the energy denominator by the following,

1

(E + "i � "f � E0)2 + �2=4
=

1

�h�

Z 1

�1
dt e�

i
�h
(E�E0)te�

�

2�h
jtje�

i
�h
"ite

i
�h
"f t (2.4)

and introduce Heisenberg operator ~r(t) = e
i
�h
Ht~r�e

� i
�h
Ht, then the cross section can be

written as,

�(E;~k) =
�0�

4�h

+1Z
�1

dt e�
i
�h
(E�E0)te�

�

2�h
jtj
X
i

gi

*
�i

����� 1N
X
�

e�i
~k~r�(0)ei

~k~r�(t)

����� �i
+

=
�0�

4�h

Z 1

�1
dt e�

i
�h
(E�E0)t

*
1

N

X
�

e�i
~k~r�(0)ei

~k~r�(t)

+
T

(2.5)

where � is taken to be zero in the exponential exp(� �
2�h
t), because we are interested

in lattice vibrations which is on an energy scale much greater than it. And h� � �iT
represents the statistical average at given temperature T .

2.3 Autocorrelation Function

In the above expression of INRS cross section (Eq. 2.5), we de�ne a function Fs(~k; t)
to be the thermal average term,

Fs(~k; t) �
*
1

N

X
�

e�i
~k~r�(0)ei

~k~r�(t)

+
T

(2.6)

By performing a Fourier transform on it, we have

Gs(~r; t) =
1

(2�)3

Z
d~k e�i

~k~rFs(~k; t) (2.7)

=

*
1

N

X
�

1

(2�)3

Z
d~k e�i

~k[~r+~r�(0)] ei
~k~r�(t)

+
T

=
1

N

*X
�

Z
d~r0 Æ

�
~r+~r�(0)� ~r0

�
Æ
�
~r0 �~r�(t)

�+
T



10

which is recognized as the particle autocorrelation function of a many-body
system [24]. That is the reason we put a subscript s to both functions G and F
to indicate this single particle autocorrelation. This is the direct result of the fact
that the total absorption cross section is just a sum of cross sections of individual
nuclei. F (~k; t) is called the intermediate scattering function of a many-body system,
while in this case it is only its autocorrelation part. Thus the cross section is related
to this correlation function by,

�(E;~k) =
�

2�h
�0�

1

2�

Z
dtd~r ei(

~k~r�!t)Gs(~r; t) (2.8)

where �h! = E�E0. The general relationship between correlation functions and scat-
tering cross section of an interacting many-body system is discussed by van Hove [24].

Now we de�ne another function Ss(!; ~k) to be

Ss(!; ~k) � 1

2�

Z
dtd~r ei(

~k~r�!t)Gs(~r; t) (2.9)

It is similar to the dynamic structure factor de�ned by the same equation but using
instead the particle pair correlation function,

G(~r; t) =
1

N

*X
�;�

Z
d~r0 Æ

�
~r+~r�(0)� ~r0

�
Æ
�
~r0 �~r�(t)

�+
T

(2.10)

The dynamic structure factor S(!; ~k) is a function of energy and momentum trans-
fer and can be probed by inelastic X-ray scattering and coherent inelastic neutron
scattering. Phonon dispersion surface can be mapped out by measuring the dynamic
structure factor in the entire energy and momentum range. In contrast, the function
Ss(!; ~k) obtained by inelastic nuclear resonant scattering is a function of incident
X-ray energy and momentum instead of energy and momentum transfers and its in-
terpretation is less direct than that of dynamic structure factor. Now we can rewrite
the cross section in terms of Ss(!; ~k),

�(E;~k) =
�

2�h
�0�Ss(!; ~k) (2.11)

where �h! = E � E0. This equation relates what we measure in INRS experiments
with the dynamical properties of sample. We shall call function Ss(!; ~k) the phonon

excitation probability density. Next we will discuss some properties of Ss(!; ~k) and
the information contained in this function. In the following discussions, we will omit
the subscript s which denotes the self-correlation of Ss(!; ~k) to make formulas and
equations less crowded. However, we should always keep in mind that in the context of
INRS the function S(!; ~k) is not the same as commonly recognized dynamic structure
factor.
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2.4 Phonon Excitation Probability Function

The function S(!; ~k) is related to the intermediate scattering function by Fourier
transform,

S(!; ~k) =
1

2�

Z
dt e�i!t Fs(~k; t) (2.12)

=
1

2�

Z
dt e�i!t

*
1

N

X
�

e�i
~k~r�(0)ei

~k~r�(t)

+
T

Fs(~k; t) =
Z
d! ei!t S(!; ~k) (2.13)

and it can be shown that S(!; ~k) is normalized to 1 with respect to energy,

+1Z
�1

S(!; ~k) d! =
Z
dtFs(~k; t)

1

2�

+1Z
�1

e�i!t d!

=
Z
dt

*
1

N

X
�

e�i
~k~r�(0)ei

~k~r�(t)

+
T

Æ(t)

=

*
1

N

X
�

e�i
~k~r�(0)ei

~k~r�(0)

+
T

= 1 (2.14)

We know that when there is a sudden momentum transfer, moment sum rules will
apply [25]. To verify this we will calculate �rst few moments h!ni of the function
S(!; ~k). In order to do this, it is useful to trace back the thermal average term and
express it in terms of modulus square of transition matrix elements.

S(!; ~k) =
�h�

2�

X
i

gi
1

N

X
�

X
m

D
�ije�i~k~r� j�m

E D
�mjei~k~r� j�i

E
(E + "i � "m � E0)2 + �2=4

(2.15)

As mentioned before, on the energy scale of lattice vibrations, the nuclear resonant
linewidth � is negligibly small, so it is justi�ed to use the following identity,

lim
�!0

�=2�

(E + "i � "m � E0)2 + �2=4
= Æ(E � E0 + "i � "m)

Then it reads,

S(!; ~k) =
1

N

X
�

X
i;m

gi
D
�ije�i~k~r� j�m

E D
�mjei~k~r� j�i

E
�hÆ(�h! + "i � "m) (2.16)
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from which we calculate its moments.

h!ni =

+1Z
�1

!nS(!; ~k) d!

=
1

N

X
�

X
i;m

gi
D
�ije�i~k~r� j�m

E D
�mjei~k~r� j�i

E +1Z
�1

!n�hÆ(�h! + "i � "m)d!

=
1

N

X
�

X
i;m

gi
D
�ije�i~k~r� j�m

E D
�mjei~k~r� j�i

E
("m � "i)

n 1

�hn

=
1

�hnN

X
�

X
i

gi
D
�ije�i~k~r�(H � "i)

nei
~k~r� j�i

E
(2.17)

where H is the Hamiltonian of lattice, and we have

H =
X
�

~p2�
2M

+ V (~r) (2.18)

e�i
~k~r�Hei

~k~r� =
X
�

e�i
~k~r�

~p2�
2M

ei
~k~r� + V (~r)

=
X
�

~p2�
2M

+

"
i~k~r�;

~p2�
2M

#
+
1

2

"
i~k~r�;

"
i~k~r�;

~p2�
2M

##
+ V (~r)

= H � �h~k~p�
M

+
�h2k2

2M
(2.19)

where ~p� is the momentum of �-th atom, and M is the mass of the atom. Over a
typical phonon spectrum the incident X-ray wave vector changes very little from the
resonant wave vector k0, so the last term can be approximated by �h2k20=2M = ER,
the nuclear recoil energy.

If we calculate moments h(�h! � ER)
ni instead of h!ni, then

h(�h! � ER)
ni =

1

N

X
�

X
i

gi

*
�i

����
�
H � "i � �h~k~p�

M

�n�����i
+

(2.20)

h(�h! � ER)
1i =

1

N

X
�

X
i

gi

*
�i

����
�
H � "i � �h~k~p�

M

������i
+

= ��h~k

M

1

N

X
�

X
i

gi

�
�i

����~p�
�����i
�

= 0 (2.21)

h(�h! � ER)
2i =

1

N

X
�

X
i

gi

*
�i

����
�
H � "i � �h~k~p�

M

�2�����i
+

=
1

N

X
�

X
i

gi

*
�i

����
�
�h~k~p�
M

�2�����i
+
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= 4ER T (k̂) (2.22)

h(�h! � ER)
3i =

1

N

X
�

X
i

gi

*
�i

����
�
H � "i � �h~k~p�

M

�3�����i
+

=
1

N

X
�

X
i

gi

*
�i

�����h~k~p�M

�
H � "i � �h~k~p�

M

�
�h~k~p�
M

�����i
+

=
�h2k2

M2

1

N

X
�

X
i

gi

*
�i

����
�
P�0HP�0 � HP 2

�0 + P 2
�0H

2

������i
+

= ��h2k2

2M2

1

N

X
�

X
i

gi

�
�i

����[P�0; [P�0; H]]
�����i
�

=
ER

M

1

N

X
�

X
i

gi

*
�i

�����h2 @
2V

@r2�0

�����i
+

=
ER

M
�h2 K(k̂) (2.23)

where T (k̂) is the average kinetic energy per atom along the incident beam direction
k̂. P�0 is the k̂-component of momentum of �-th atom and K(k̂) is the average force
constant along k̂-direction. Since the nuclear recoil energy is well known, the �rst
moment sum rule (Eq.2.21) can be used to normalize the measured spectrum, which
will be discussed later.

The above results show that certain lattice dynamic quantities can be obtained by
simply calculating the �rst few moments of the measured spectrum. Such obtained
quantities have directional dependence in general. We can expect this directional
e�ect in high symmetry single crystal sample and indeed such anisotropy was observed
in 57FeBO3 single crystal [26, 27]. For polycrystalline sample, due to the random

orientation of the constituent crystallites, it is equivalent to average S(!; ~k) over full
4� solid angle. In such cases, we have,

S(!) �
Z d


4�
S(!; ~k) (2.24)

+1Z
�1

S(!) d! =
Z d


4�

+1Z
�1

S(!; ~k) d! = 1 (2.25)

+1Z
�1

�h!S(!) d! =
Z d


4�

+1Z
�1

�h!S(!; ~k) d! = ER (2.26)

+1Z
�1

(�h! � ER)
2S(!) d! =

Z d


4�

+1Z
�1

(�h! � ER)
2S(!; ~k) d! =

4

3
ER T (2.27)

+1Z
�1

(�h! � ER)
3S(!) d! =

Z d


4�

+1Z
�1

(�h! � ER)
3S(!; ~k) d! =

ER

M

�h2

3
K (2.28)
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where T and K are respectively, the mean kinetic energy per atom of, and mean force
constant experienced by the resonant nuclei.

Next, we will prove an important property of the phonon excitation probability
function for a system in thermal eqilibrium. It is the general detailed balance relation.

S(�!;�~k) = e���h!S(!; ~k) (2.29)

where � = 1=kBT . The validity of above relation can be shown by rewriting Eq. (2.16)

with �! and �~k, and replacing gi by e���h!i=Z, where Z is the partition function of
the system.

S(�!;�~k) = 1

N

X
�

X
i;m

e���h!i

Z

D
�ije+i~k~r� j�m

E D
�mje�i~k~r� j�i

E
�hÆ(��h! + "i � "m)

=
1

N

X
�

X
i;m

e��h(!m�!i)
e���h!m

Z

D
�mje�i~k~r� j�i

E D
�ije+i~k~r� j�m

E
�hÆ(�h! + "m � "i)

= e���h!
1

N

X
�

X
m;i

gm
D
�mje�i~k~r� j�i

E D
�ije+i~k~r� j�m

E
�hÆ(�h! + "m � "i)

= e���h!S(!; ~k)

Later we will show that S(!; ~k) also satis�es the following relation,

S(�!; ~k) = e���h!S(!; ~k) (2.30)

which, in combination with the detailed balance, indicates that S(!; ~k) is invariant

under momentum inversion, S(!; ~k) = S(!;�~k). It is a result of time reversal sym-
metry of our absorption problem. This means that in principle we will get same
dynamical information if we perform momentum and energy analysis of nuclear de-
cays.

So far, we have been assuming that there are only nuclear resonant isotopes in
our many-body system, which is clear in the way the lattice Hamiltonian is written in
Eq. (2.18). Under such assumption, the lattice dynamic information obtained is that
of the whole lattice. However, this assumption is not necessary. If we let the index �
and � run through only nuclear resonant isotopes and N be the total number of them,
and add kinetic energy terms for non-resonant isotopes and other atomic species in
Eq. (2.18), then all the relations still hold, only now the lattice dynamic quantities
obtained are just those of the sublattice formed by resonant isotopes. We shall keep
this in mind as we continue the discussion. This element (isotope) selectivity and
hence the possible site selectivity is the unique and important feature of INRS.
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2.5 Partial Phonon Density of States

The quantities obtained by moment sum rules are averaged properties of the dynamics
of the lattice studied. In order to make full use of the whole spectrum measured we
need to �nd a model of the particle correlation function Gs(~r; t) or the intermediate

scattering function Fs(~k; t). From the model one calculates S(!; ~k) then compares it

with the measurement. For an arbitrary system, Fs(~k; t) is diÆcult to calculate. But
for most solids, the harmonic model is a good approximation, and we shall use this
model to study vibrational dynamics of solids.

In the harmonic approximation, the Hamiltonian can be written as a collection
of harmonic oscillators,

H =
X
l

�h!l (b
y
lbl +

1

2
) (2.31)

where byl , bl are the creation and annihilation operator of phonons, or normal modes l
of collective vibrations. For a system lacking periodicity, e.g., for amorphous material,
l is just an index without any physical signi�cance, while for crystals, phonons are
indexed with the branch number s and wave vector ~q. For harmonic crystals the
nuclear displacements can be expressed in terms of phonon operators,

~u�(t) =
X
~q;s

 
�h

2M ~N!s(~q)

! 1

2

~� �s

�
b~q;se

i(~q~R��!s(~q)t) + b
y
~q;se

�i(~q~R��!s(~q)t)
�

(2.32)

where ~� �s is the polarization vector of phonon branch s at lattice site �. It is the same

for equivalent sites in a crystal. ~R� is the equilibrium position of �-th nucleus and
~r�(t) = ~R� + ~u�(t). ~N is the total number of all atoms in the lattice, which may be
di�erent from the number of nuclear resonant isotopes N .

Substituting Eq. (2.32) into (2.6), we have,

Fs(~k; t) =

*
1

N

X
�

e�i
~k~r�(0)ei

~k~r�(t)

+
T

=
1

N

X
�

D
e�i

~k~u�(0)ei
~k~u�(t)

E
T

since ~R� commutes with any ~u�(t), and we have changed the order of summation over
all resonant nuclei and the thermal average. It can be veri�ed that the commutatorh
~k~u�(0); ~k~u�(t)

i
is a c-number. By the operator identity eAeB = eA+Be

1

2
[A;B], and

Ott's theorem heiyi = e�
1

2
hy2i, we have

D
e�i

~k~u�(0)ei
~k~u�(t)

E
T

= exp
�
�1

2

��
� ~k~u�(0) + ~k~u�(t)

�2�
T

�
� exp

�
1

2
[�i~k~u�(0); i~k~u�(t)]

�
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= exp
�
�1

2

��
~k~u�(0)

�2
+
�
~k~u�(t)

�2 � 2
�
~k~u�(0)

��
~k~u�(t)

��
T

�
(2.33)

where the three terms in the above expression can be evaluated by substituting the
~u's by Eq. (2.32). The �rst two terms are found to be,D

[~k � ~u�(0)][~k � ~u�(0)]
E
T
=
D
[~k � ~u�(t)][~k � ~u�(t)]

E
T

=
X
~q;s

 
�h

2M ~N!s(~q)

!�
~k � ~� �s

�2 D
b~q;sb

y
~q;s + b

y
~q;sb~q;s

E
T

=
X
~q;s

 
�h

2M ~N!s(~q)

!�
~k � ~� �s

�2 �
2n~q;s + 1

�

=
X
~q;s

 
�h

2M ~N!s(~q)

!�
~k � ~� �s

�2
coth

�h!s(~q)

2kBT
� 2W� (2.34)

which is the recoilless factor for lattice site �. It is similar to the Debye-Waller factor
in X-ray di�raction. In the context of nuclear resonant scattering, it is called Lamb-
M�ossbauer factor. The di�erence is that Debye-Waller factor is for fast scattering
process and is a function of momentum transfer, while Lamb-M�ossbauer factor is for
slow scattering process and is a function of the incident momentum. The occupation
number is n~q;s = 1=(e��h!s � 1).

For the third term in the expression (2.33), let's de�ne a

2M��(t) �
D
[~k � ~u�(0)][~k � ~u�(t)]

E
T

=
X
~q;s

 
�h

2M ~N!s(~q)

!�
~k � ~� �s

�2 n
(n~q;s + 1)ei!s(~q)t + n~q;se

�!s(~q)t
o

(2.35)

Notice that both W� and M��(t) are functions of ~k which is the incident photon
momentum, instead of the momentum transfer in case of X-ray di�raction. Notice
that M��(0) =W� . Finally, we have

Fs(~k; t) =
1

N

X
�

e�2W� e2M��(t) (2.36)

where the sum is over all resonant nuclei and the site dependency shows up through
phonon polarization ~� �s . In a crystal, equivalent sites share same polarization vector
and we can separate the right hand side in above equation into sums of non-equivalent
sites in a unit cell,

Fs(~k; t) =
X
j

pj e
�2Wj e2Mjj(t) (2.37)
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X
j

pj =
X
j

Nj

N
= 1 (2.38)

where pj is the fraction of sites of type j of all the sites occupied by resonant nucleus
in the unit cell.

We know that Fs(~k; t) is the Fourier transform of S(!; ~k). The particular form of

Fs(~k; t) for Harmonic lattice (Eq.2.36) allows us to decompose S(!; ~k) by expanding

the second exponential in Fs(~k; t). For the sake of simplicity, let's consider the case
where the crystal is made of only the resonant isotopes and there is one atom per
unit cell. Then the site dependency can be dropped. The more general situation can
be easily recovered by reinstalling the sum. For the simple case, we have,

F
n
S(!; ~k)

o
= Fs(~k; t) = e�2W e2M(t)

F
n
S0(!; ~k)

o
= F (0)

s (~k; t) = e�2W [2M(t)]0 = e�2W � f

F
n
S1(!; ~k)

o
= F (1)

s (~k; t) = e�2W [2M(t)]

F
n
Sn(!; ~k)

o
= F (n)

s (~k; t) = e�2W
[2M(t)]n

n!

from which we can derive the following recursive relations,

F
8<
:Sn(!;

~k)

f

9=
; =

1

n
F
8<
:Sn�1(!;

~k)

f

9=
; F

8<
:S1(!;

~k)

f

9=
; (2.39)

where f = e�2W is Lamb-M�ossbauer factor. Then by reverse transform and convolu-
tion theorem for Fourier transform, we �nd the expressions for S(!; ~k),

S(!; ~k) = S0(!; ~k) + S1(!; ~k) + S2(!; ~k) + � � � (2.40)

S0(!; ~k) = f Æ(!) (2.41)

S1(!; ~k) =
f

2�

Z
2M(t) e�i!t dt (2.42)

Sn(!; ~k) =
1

n f

Z
Sn�1(! � !0; ~k)S1(!

0; ~k) d!0 (2.43)

The meaning of these terms is very clear. The zero-th order term represents the elastic
peak. The �rst order term is for the processes only involving single phonon during
the nuclear excitation. The n-th order term represents the contribution involving n
phonons. Substituting Eqs. (2.35) into (2.42),

S1(!; ~k) = f
X
~q;s

�h(~k � ~�s)2
2M ~N!s(~q)

Z dt

2�
e�i!t

n
(n~q;s + 1)ei!s(~q)t + n~q;se

�!s(~q)t
o

= f
X
~q;s

�h(~k � ~�s)2
2M ~N!s(~q)

n
(n~q;s + 1) Æ

�
! � !s(~q)

�
+ n~q;s Æ

�
! + !s(~q)

�o
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which, for E = �h! > 0, reads

S1(E;~k) =
f ER

E (1� e��E)

1
~N

X
~q;s

(k̂ � ~�s)2 Æ
�
E � Es(~q)

�
(2.44)

while for E = �h! < 0,

S1(E;~k) =
f ER

�E (e��E � 1)

1
~N

X
~q;s

(k̂ � ~�s)2 Æ
�
jEj � Es(~q)

�
(2.45)

To demonstrate its meaning, let's consider a polycrystalline sample, for which the
average over 4� solid angle results in phonon density of states,

S1(E) =
Z d


4�
S1(E;~k) =

f ER

E (1� e��E)

1

3 ~N

X
~q;s

Æ
�
jEj � Es(~q)

�

=
f ER

3E (1� e��E)
D(jEj) (2.46)

where D(E) is phonon density of states per atomic volume per eV . This is also true
for single crystals with cubic symmetry, since in such cases the lattice properties are
isotropic. In general we de�ne,

D(E; k̂) = 1
~N

X
~q;s

(k̂ � ~�s)2 Æ
�
E � Es(~q)

�
(2.47)

as a projected, or weighted, density of states in the direction of incident beam. For
an anisotropic single crystal it shows direction dependence. It is related to S1(E;~k)
in the same way as in Eq. (2.46),

S1(E;~k) =
f ER

E (1� e��E)
D(jEj; k̂) (2.48)

This is an important result telling us that from measured INRS spectrum we will be
able to extract weighted vibrational density of states of resonant isotopes in a sample.
For a polycrystalline sample or an isotropic sample with cubic symmetry, the exact
phonon DOS is obtained as shown in Eq. (2.46).

With phonon density of states, the contribution from Sn-sublattice to the ther-
modynamics properties of the sample can be calculated. The phonon system can
be represented as a grand canonical ensemble with zero chemical potential. The
partition function for a phonon system is

Z =
Y
l

X
n

e���h!l(n+
1

2
) =

Y
l

e�
1

2
��h!l

1� e���h!l
(2.49)
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where � = 1=kBT . Then the free energy, vibrational entropy, and speci�c heat are,

F = � 1

�
lnZ =

1

2

X
l

�h!l +
1

�

X
l

ln(1� e���h!l) (2.50)

S = �@F

@T
= kB�

X
l

�h!l
e��h!l � 1

� kB
X
l

ln(1� e���h!l) (2.51)

CV = T

 
@S

@T

!
V

= +kB�
2
X
l

(�h!l)
2e���h!l

(1� e���h!l)2
(2.52)

Now we can prove a property of S(E;~k) similar to the detailed balance relation.
In the above Eq. (2.48), replacing E by �E and we have,

S1(�E;~k) = e��E S1(E;~k)

It can be generalized to S(E;~k) by virtue of the recursive relation (Eq. 2.43), so that
it is held that,

S(�E;~k) = e��E S(E;~k) (2.53)

Combining this with the condition of detailed balance (Eq. 2.29), we can show that

the phonon excitation probability density function is symmetric in ~k,

S(E;�~k) = S(E;~k) (2.54)

2.6 Non-Equivalent Sites

For the general case where there are nonequivalent sites in a crystal occupied by
resonant isotopes, we shall rewrite Eqs. (2.40) { (2.43) in the sum of lattice sites.

S(!; ~k) =
X
j

pj S
j(!; ~k) =

X
j

pj
n
Sj
0(!; ~k) + Sj

1(!; ~k) + � � �
o

(2.55)

Sj
0(!; ~k) = fj Æ(!) (2.56)

Sj
1(!; ~k) =

fj
2�

Z
2Mjj(t) e

�i!t dt (2.57)

Sj
n(!;

~k) =
1

n fj

Z
Sj
n�1(! � !0; ~k)Sj

1(!
0; ~k) d!0 (2.58)

Eq. (2.47) and (2.48) are also generalized to

D(E; k̂) =
X
j

pj Dj(E; k̂) (2.59)

Dj(E; k̂) =
1
~N

X
~q;s

(k̂ � ~�js)2 Æ
�
E � Es(~q)

�
(2.60)

Sj
1(E;~k) =

f R

E (1� e��E)
Dj(jEj; k̂) (2.61)
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These relations can be used to simulate S(!; ~k), thus the measured INRS cross sec-
tion, provided a model of partial phonon density of states (Eq. 2.60) is known. How-
ever, the inverse problem, i.e., extracting partial DOS from measured spectrum, is
not always solvable. To show that, let's rewrite Eqs. (2.40) again by regrouping terms
by the order of phonons.

S(!; ~k) = S0(!; ~k) + S1(!; ~k) + S2(!; ~k) + � � � (2.62)

S0(!; ~k) =
X
j

pj S
j
0(!; ~k) =

X
j

pj fj Æ(!) (2.63)

S1(!; ~k) =
X
j

pj S
j
1(!; ~k) =

X
j

pj
fj
2�

Z
2Mjj(t) e

�i!t dt (2.64)

Sn(!; ~k) =
X
j

pj S
j
n(!; ~k) =

X
j

pj
1

n fj

Z
Sj
n�1(! � !0; ~k)Sj

1(!
0; ~k) d!0 (2.65)

This set of equations reduce to Eqs. (2.40) { (2.43) when there is only one distinct
site for resonant nuclei. With the help of Eqs. (2.59) { (2.61), we can show that

the relation Eq. (2.48) still holds for the above de�ned S1(!; ~k), which means that

the single phonon contribution to S(!; ~k) is still directly proportional to the phonon

density of states. However, for Sn(!; ~k) the recursive relation Eq. (2.43) does not

hold any more when there are more than one distinct site. For such cases, S1(!; ~k)

can not be solved from S(!; ~k), since there are only n transcendental equations for
n�m unknowns. Here n is the number of data points of the measured spectrum and
m is the number of distinctive sites occupied by nuclear resonant isotopes.

Even though in general when there are non-equivalent sites, single phonon term
cannot be separated, we can get around this diÆculty under some special conditions.
For example, by performing experiments at low temperature, multiple phonon con-
tributions are reduced. When it comes to a point that these high order terms can
be neglected, there are only two terms left, where S0(!; ~k) is the average Lamb-

M�ossbauer factor and S1(!; ~k) is proportional to phonon DOS. On the other hand,
we might make the approximation that all sites have very similar phonon frequency
distributions, thus simplify the problem to a single site problem. That means when
facing a non-equivalent sites problem, we simply go ahead apply the algorithm de-
scribed in the previous section and obtain a phonon density of states, but we must
keep in mind that this is a rough average at the best. In the situation where we
believe resonant isotopes occupy di�erent sites which participate in di�erent modes
of vibrations, this procedure breaks down.

These results can be easily extended to a lattice without translational symmetry,
where the displacement (Eq. 2.32) is replaced by

~u�(t) =
X
l

 
�h

2M ~N!l

! 1

2

~��l
n
bl e

�i!lt + b
y
l e

+i!lt
o

(2.66)
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by which we can show that all the equations derived so far hold, provided the phonon
modes are labeled properly with index l instead of (s; ~q). In this case, every site
becomes a non-equivalent site in principle, and the subscript j in Eq. (2.37) reduces
to � and pj is just 1=N . If nuclear resonant isotopes are more or less randomly
distributed in the sample, we can only talk about an averaged vibrational frequency
distribution, thus our algorithm can be applied and Eq (2.37) becomes,

Fs(~k; t) = e�2W e2M(t) (2.67)

Formally, this is the same as single site case.

2.7 Experimental Intensity

In this section we will calculate the intensity we can expect from an INRS experiment.
Let's start with the INRS cross section (Eq. 2.11),

�(E) =
�

2
�0�S(E) (2.68)

In the above expression, we have omitted the ~k dependency. To avoid nonessen-
tial complication of mathematics, we will assume the following model for measured
intensity,

Im(E) = �
Z
dE 0R(E 0 � E)

1Z
0

I0n�(E
0) e�(n�(E

0)+� ) l dl (2.69)

where I0 is the incident beam ux. R(E) is the instrumentation resolution function,
which is the energy resolution function of high resolution monochromator which will
be discussed in next chapter. And n is the number density of nuclear resonant iso-
topes, l is the penetration depth of the incident beam, � is the electronic absorption
coeÆcient of incident beam in the sample, and � is the detection eÆciency which in-
cludes solid angle and detector eÆciency for the uorescences. What is assumed here
is that all the nuclear resonant events contribute to measured intensity. Under such
an assumption, the absorption of both nuclear and atomic uorescences are neglected.
It can be shown that, through slightly involved integrals, the incorporation of these
absorptions result in a constant on the order of 1. Carrying out the integration of
penetration depth l in the above equation, we have,

Im(E) = � I0

Z
dE 0R(E 0 � E)

n�(E 0)

n�(E 0) + �
(2.70)

According to Eq. (2.62), we can separate the phonon excitation probability density
function S(E) into elastic and inelastic (phonon) contributions.

S(E) = S0(E) + S 0(E) = f Æ(E) + S 0(E) (2.71)
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where f is the average of site sum (see Eq. 2.63). The cross section can be separated
in the same way, where the Æ-function is replaced by Lorentzian resonance pro�le
having a width of �,

�(E) =
�

2
�0�

(
f

�=2�

E2 + �2=4
+ S 0(E)

)

= �0�

(
f

�=4

E2 + �2=4
+
�

2
S 0(E)

)
(2.72)

Thus, for E = 0,

�(E = 0) = �0f � 105�Thomson (2.73)

while an estimate for E 6= 0 is,

�(E 6= 0) =
�

2
�0�S 0(E) = �0�

�

2

1� f

2�D
� 10�7�0 � 10�1�Thomson (2.74)

Meanwhile the electronic absorption coeÆcient can be written as � = nel�el, where
�el is typically 10

3�Thomson, and nel is the number density of all atoms in the sample.
The ratio n=nel is smaller than 1 and depends on chemical composition and isotope
enrichment. From the above numbers, we conclude that elastic nuclear resonant
scattering is much stronger than electronic absorption, and inelastic nuclear resonant
scattering is much weaker than it.

Due to the signi�cant di�erence between �(E = 0) and �(E 6= 0), let's treat them
separately. For E 6= 0,

Im(E 6= 0) = � I0

Z
dE 0R(E 0 � E)

n�(E 0)

n�(E 0) + �

� � I0 n

�

Z
dE 0R(E 0 � E) �(E 0) (2.75)

Besides the convolution with resolution function, the measured intensity is propor-
tional to the INRS cross section for the whole spectrum except the elastic peak. For
an estimate, let R(E) = 1=�E for jEj < �E=2 and otherwise vanishes. Then,

Im(E 6= 0) = � I0
n�0
�

�

2

1� f

2�D
� � � I0 � 10�5 (2.76)

where we have assumed, for typical situations, that n�0=� � 103, f � 0:5, 2�D �
10�1eV , and � � 10�9eV .

On the other hand, for E = 0, we have,

Im(E � 0) = � I0

Z
dE 0R(E 0 � E)

n�(E 0)

n�(E 0) + �
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� � I0

Z
dE 0R(E 0 � E)

n �0f�2=4
E02+�2=4

n �0f�2=4
E02+�2=4

+ �

= � I0

Z
dE 0R(E 0 � E)

n�0f�
2=4�

E 02 + (n�0f=� + 1)�2=4
(2.77)

In the above equation, we can see the broadening of nuclear resonance, and this is
in accord with the forming of nuclear exciton in the sample when elastic nuclear
resonance occurs. With the above assumed instrumentation function R(E), its range
of being non-zero (� meV ) is much wider than the width of the Lorentzian, thus we
have,

Im(E � 0) � � I0
�E

1Z
�1

dE 0 n�0f�
2=4�

E 02 + (n�0f=� + 1)�2=4

= � I0
�

2

 
n�0f

�

!1=2
�

�E
� � I0 � 10�4 (2.78)

Compare the measured intensity at elastic peak (E = 0) and that at phonon part
of the spectrum (E 6= 0), the former is about one order of magnitude larger than the
latter. The same ratio in the cross section is on the order of 106. This enormous elastic
peak suppression is the result of strong recoiless absorption, which causes only a very
thin top layer of the sample contribute to elastic peak, while a much thicker portion
of the sample contribute to the inelastic part of the spectrum. The penetration depth
of incident X-rays with energy \o� resonance" is essentially determined by electronic
absorption. This can be demonstrated very clearly by the following estimation for
a sample of enriched SnO. According to Eq. (2.73) the INRS cross section at exact
nuclear transition energy is 3.8 �105 barn, which corresponds to an absorption length
of 0.9 �m. This is very small compared to the electronic absorption in the material
with the absorption length of 134 �m. The cross section and absorption length for the
inelastic part of the spectrum are 1 barn and 0.34 �106 �m according to Eq. (2.74).

Now we can verify an assumption made earlier in deriving the cross section for
INRS (see page 9). The assumption is that the resonant absorption of incident
photons by individual nuclei are independent, or that, there is no multiple excitations
simultaneously in the sample. At the third generation synchrotron sources, I0 in
the above estimations after a high resolution monochromator is on the order of 108

photons per second. With a �lling pattern of 25 bunches in the storage ring, there
are 1s=3:68�s � 25 � 107 bursts of X-ray pulses per second. Here the revolution
time of 3:68�s at APS is used. Thus the nuclear resonant events happen at a rate of
less than 10�3 per pulse, and there is virtually no chance of multiphoton excitations.
We have veri�ed the assumption of independent absorption. However, for a much
brighter source, as the planned X-ray FELs, the peak brilliance may be ten orders
of magnitude higher than that of current storage rings. The independent absorption
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assumption is not valid any more. The number of multiple excitations may be as
high as 10000, and the beam is fully coherent over the entire beam cross section.

2.8 Normalization and Recoilless Fraction

In previous sections, we have calculated cross section for INRS, and explained how
it is related to vibrational dynamics of sample. Next, let's consider data analysis
procedure of an INRS experiment [12, 28, 29], particularly how to normalize the
spectrum and extract lattice dynamic informations. In this section we do not write
the ~k-dependence explicitly for the sake of simplicity. Since the measured ux is a
convolution involving the normalized instrument resolution function R(E),

Im(E) =
Z
I(E 0)R(E � E 0) dE 0 ; (2.79)

we have the following relations for the moments of spectrum,

hImi0 = hIi0 (2.80)

hImi1 = hIi1 + hIi0hRi1 (2.81)

hImi2 = hIi2 + 2hIi1hRi1 + hIi0hRi2 (2.82)

hImi3 = hIi3 + 3hIi2hRi1 + 3hIi1hRi2 + hIi0hRi3 ; (2.83)

where h in denotes the n-th moment. Using these relations, the moments of S(E)
can be calculated from those of Im(E) and R(E), which are experimentally measured
quantities.

From the discussion in last section, we understand that I(E) is proportional to the
INRS cross section except in the region of elastic peak, where it is severely suppressed.
With the help of Eqs. (2.71) and (2.72), we can write I(E) as,

I(E) = aS 0(E) + bfÆ(E) (2.84)

where b=a � 1 represents the peak suppression. Since the sum rules concern S(E)
rather than S 0(E), we will rewrite I(E) as,

I(E) = AS(E)�B Æ(E) (2.85)

where A = a is the normalization factor and B = (a � b)f . Substituting this I(E)
into Eqs. (2.79) { (2.81), we �nd,

A =
1

ER
(hImi1 � hImi0hRi1) (2.86)

B = hImi0 � A (2.87)

As can be seen from the above expression (2.85) of I(E), that except the zero-th
moment, all other moments of I(E)=A are equal to those of S(E). Thus we are able
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to use the sum rules (2.22) and (2.23) to calculate mean kinetic energy T and mean
force constant K directly from measured spectrum. From the mean kinetic energy,
we can also calculate the second order Doppler shift,

ÆSOD = �E0
hv2i
2c2

= �E0
T

Mc2
(2.88)

For moments higher than the third one, the part of spectrum with large jEj will
dominate. Since the count rates at these regions of a spectrum (towards both ends of
it) are low, the large statistical uncertainties obscure the values that can be calculated.
So usually we do not calculate moments higher than the third one.

The f -factor can be calculated from Eqs. (2.71) and (2.84),

f = 1�
Z
S 0(E) dE = 1�

Z I(E)� bfÆ(E)

A
dE

= 1� 1

A

Z
I 0(E) dE = 1� 1

A
hI 0i0 = 1� 1

A
hI 0mi0 (2.89)

where I 0m is the measured spectrum with elastic peak removed.
To remove elastic peak, �rst we �t the central peak with the instrument resolu-

tion function and the inelastic contribution under the elastic peak. Then the �tted
resolution function is subtracted from data. The instrument resolution function is
measured by nuclear forward scattering, in which the elastic resonance is enhanced
coherently in forward direction so that the nuclear resonance acts as an extremely
�ne probe to measure the energy bandpass of the high resolution monochromator
(see page 39). The inelastic contribution is complicated. In principle, all terms in
Eq. (2.40) make contribution at E = 0, not just S0. So we need a model to simulate
the inelastic contribution in the vicinity of E = 0. In the close vicinity of the elastic
peak, S1 can be very well approximated by the Debye model,

S1(E) =
f R

3E (1� e��E)
D(jEj) / f R

3E (1� e��E)
E2 / (1 +

�

2
E) (2.90)

for small jEj. If the single phonon term S1 is the dominate one in the series, then we
can �t the elastic peak with the sum of monochromator resolution function and the
above approximation for inelastic contribution, and subtract from the data only the
instrumentation resolution part.

The peak �tting is also important for combining several scan data sets into one
spectrum. Usually for one sample, the spectrum is scanned repeatly many times,
so that each scan can be completed in a short period of time for the reasons of
X-ray beam and instrument, especially temperature, stabilities. To combine these
data sets, we need to �nd the E = 0 point. If we have a distinguishable central
peak, then it is �tted with the monochromator resolution function plus the inelastic
contribution under the peak. Then the data is shifted in energy so that the elastic
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peak is at exactly E = 0 in the new data set. Afterwards, all data sets are added up
to improve statistics. Another way to �nd E = 0 is to monitor the forward scattering
simultaneously, whose dominant elastic signal will indicate E = 0.

The f -factor and second order Doppler shift are important paramenters in
M�ossbauer spectroscopy. They can be obtained in M�ossbauer transmission exper-
iments, but with some complications. In such measurements, the f -factor is almost
always tied to area density of resonant isotopes, which is very diÆcult to determine
accurately. The sample geometry, its uniformity, and the isotope abundance all con-
tribute to the determination of area density, and this causes a lot uncertainties of the
value of f -factor obtained in such experiments. As a result, the absolute value of f
is not very reliable and most times relative ratios are used to extract information.
In studying local electronic environments of resonant nuclei, chemical isomer shifts
are much desired numbers by M�ossbauer spectroscopy. However, the isomer shift is
always accompanied by second order Doppler shift. Inelastic nuclear resonant scat-
tering provides a way to obtain second order Doppler shift independently, and obtain
f -factor more precisely. A general discussion of f -factor and second order Doppler
shift can be found in Ref. [29].



Chapter 3

Instrumentation and Experimental Setups

3.1 Experimental Setups

The experiments described in this thesis were all conducted at the Advanced Photon
Source Sector 3-ID undulator beamline. The undulator is a 90 pole 2.7 cm period de-
vice optimized for 14.4 keV at �rst harmonic. For 119Sn experiments, third harmonic
has to be used with an undulator gap of 11.45 mm. The energy width of the 3rd har-
monic is about 300 eV . The general layout of experimental setup is shown in Fig. 3.1.
Following the undulator, there are water-cooled white beam slits, that have a horizon-
tal opening of 3mm and a vertical opening usually set at about 0.5mm or less, which
corresponds to a 18 �rad vertical angle from the source (the distance between the
white beam slits and the center of the undulator is 28 m). The angular divergence of
the undulator 3rd harmonic is about 15 �rad. A water-cooled diamond double-crystal
monochromator is used as premonochromator, or high heat load monochromator as
it is often called. For both diamond crystals, nearly-symmetric (1 1 1) reection is
used, which has a Bragg angle of 7.24Æ and theoretical Darwin width of 7.24 �rad at
23.880 keV X-ray energy. However, the measured beam divergence after two di�erent
sets of diamond crystals used at di�erent times are about 12 and 9 �rad respectively.
The measured X-ray beam energy bandwidth are about 3 and 2 eV . Usually there is
a vertical slit before the high resolution monochromator to restrict the X-ray beam
both spatially and angularly to no more than the high resolution monochromator can
accept.

The high resolution monochromator crystals are mounted on high resolution rota-
tion stages with adjustable height. They are placed on air pads to allow positioning
in the horizontal plane. The crystals are placed on L-brackets which in turn are
connected to the rotation axis. To minimize strain, the back of the crystals is at-
tached to the holder by applying a thin layer of Vaseline. Nylon screws are used
against the sides of crystals to restrict sliding motion. In case of channel-cut crystals,
the monochromatized beam is parallel to the incident beam with a vertical o�set.
For two-crystal monochromator with di�erent reections, as those used in this 119Sn
work, the meV -beam is reected away from the incident beam direction going back-
wards and up. So the sample and detector are placed upstream to the high resolution
monochromator. Arrangements of sample and detector for both INRS and resolution
function measurement are shown in Fig. 3.1.

For INRS experiments, detector is placed very close to the sample to cover as large
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APD detector
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undulator slits
         C (111)
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 high-resolution
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APD detector

sample

Figure 3.1: Experimental setup for INRS experiments and resolution mea-
surement (inset).

a solid angle as possible. Avalanche Photodiode (APD) detectors are used because
of their good time resolution and large dynamic range [8, 9, 10]. We use APDs from
EG&G Optoelectronics Canada. The active region of silicon chip has a thickness of
100 �m. The active areas of the diodes we have used are 5�5 and 10�10 mm2. The
typical rise time is about 1 ns and the pulse lasts from a few ns to 10 ns.

APD

R

C

HV

Signal

preamp

Figure 3.2: Schematics for APD detector.

The current ampli�er is very important to the successful application of APD
detectors. It needs to have high bandpass and low noise characteristics. The general
scheme for such detector is shown in Fig. 3.2. The housing design for the diode and
the preamp is equally crucial to avoid oscillation and reduce noise. Good contact and
proper shielding are important. The o�-the-shelf preamp from Phillips Scienti�c,
model 6954, works reasonably well. However, some in-house designed preamps and
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Figure 3.3: Schematics of electronic setup for timing. CFD: constant frac-
tion discriminator, TAC: time to analog converter, ADC: analog to digital
convertor, PHA: pulse height analyzer.

housing work better [30, 31].
As mentioned in the introduction, it is the characteristic nuclear decay time that

makes it possible to separate weak nuclear resonant signals from the overwhelm-
ing electronic scattering. Compared to the nuclear resonant scattering intensities of
Eqs. (2.78) and (2.76), the electronic scattering intensity is on the order of � I0, which
can be �ve orders of magnitude larger. So, timing is a very important part of nuclear
resonant scattering experiments. With a proper �lling pattern of the storage ring,
timing is achieved by employing fast NIM (Nuclear Instrument Module) electronics.
The basic idea is to gate out prompt signals by fast anticoincident logic. To do that
we need a timing signal which is synchronized with each bunch of electrons in the
storage ring. Such bunch signal can be generated from the storage ring RF oscillators
or from the injection to the storage ring. With proper delay, the bunch signal is set
to coincide with the prompt signal from detector. Then through an anticoincident
logic, the prompt signals are gated out. The diagram in Fig. 3.3 displays the basic
electronic setup for timing.

3.2 Basic Principles of Crystal Monochromator

From previous discussions we understand that in order to measure phonon spectra,
the radiation needs to be monochromatized into a bandwidth of a few meV or less.
This requires the energy resolution ÆE=E to be 10�7 or better at the nuclear resonant
energy of 119Sn. How do we achieve such a high degree of monochromatization? Not
very long ago, X-rays were considered \a far less powerful probe of the phonon spec-
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trum" (p. 480 in Ref. [32]) than neutron and light, mainly because of the diÆculties
in analyzing small energy change of X-rays. Crystal di�raction is usually employed
to select a portion of radiation with particular energies. However, the mosaic na-
ture of real crystals limits their resolving power. The development in crystal growing
techniques and the demand of high purity crystals from semiconductor industry have
substantially improved the crystal quality. Today, it is not too diÆcult to get so called
\perfect crystals" | the high purity silicon single crystals1. The availability of such
crystals not only revived the interest in the dynamical theory of X-ray di�raction, but
also provides necessary materials for optics used at synchrotron radiation facilities.
According to dynamical theory calculations, a spectral resolving power of 10�7 at
about 24 keV can be achieved with certain choices of silicon crystal reections.

The fundamental principle of monochromatization by crystal di�raction is Bragg's
law,

� = 2d sin � (3.1)

where d is the interplanar spacing of the crystallographic planes with Miller index
(h k l). It describes the relationship between the wavelength of the radiation (or the
energy) and the so called Bragg angle of the di�raction of order (h k l). Bragg's law
can be derived by calculating the interference of the scattering of plane waves from
a periodic array of atoms, where it is assumed that each atom sees the incident or
the primary wave only. This treatment is called the kinematical theory. It neglects
absorption and multiple scattering and does not allow extinction, thus violates the
conservation of energy [33]. It can be regarded as an approximation for small crystals.
Nevertheless, Bragg's law holds very nicely, needing correction to � only on the order
of �rad.

The dynamical di�raction theory takes a more realistic view of large prefect crys-
tal. It treats the crystal as a medium with periodic, complex dielectric constant,
and solves the Maxwell equations in the medium with proper boundary conditions
[34, 35, 36, 37, 38, 39, 40, 41, 42]. Thus it includes absorption, multiple scattering,
and extinction naturally. The dynamical theory of di�raction describes the per-
fect crystal optics used at various synchrotron radiation facilities quite satisfactorily.
Concerning crystal monochromator, the relevant dynamical theory results are the
refractive index correction to the Bragg angle, the Darwin width, the reectivity, and
the e�ects of asymmetric di�raction. A collection of formulas and the methods used
in designing monochromators can be found in Ref. [43, 44]. Crystal di�raction can
be classi�ed geometrically into the Bragg case, where the incident and the reected

1For example, those used to make the monochromators described in this chapter. One silicon
boule, purchased from Wacker, is a 38.4 cm long cylinder with a diameter of 10 cm. It is grown by
the oating zone technique in (1 1 1) orientation. The transverse resistivity at the seed end is 3490

-cm, and 17.52 
-cm at the opposite end. A portion of it is used to make the (4 0 0) at crystal
described later.
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  (+n +m) (+n -m)

∆λ⁄λ

θθ

∆λ⁄λ

Figure 3.5: The relative geometries of two crystal reections, along with
their respective DuMond diagrams. The angle between the second and the
�rst crystal �12 = �

(1)
B + �

(2)
B for (++) geometry and �12 = �

(1)
B � �

(2)
B for

(+�) geometry.

energy bandwidth. The other e�ect is that the reectivity for higher order reection is
lower, and that will reduce the ux throughput. The tradeo� between resolution and
ux is one of the many unavoidable ones in the designing of crystal monochromators.
Another one, for example, is between the matching of angular acceptances and X-
ray beam size. The angular width can be manipulated by asymmetric di�raction,
but that will also change beam size, which is a practical concern in the designing of
monochromators and sometimes in their applications. Instead of a slit, a preceding
crystal can be used to provide a limited angular range ��. Usually, the two crystals
need to be placed in the (++) reection geometry (Fig 3.5).

Since the Darwin width plays a very important role in perfect crystal optics, we
will say more about it. The intrinsic Darwin width, which is de�ned as the angular
range within which the reectivity is unity in the zero-absorption approximation, is
given by

! =
2

sin 2�B

re�
2

�V
CjFhklje�W (3.3)

where � is the incident X-ray wavelength, �B the corresponding Bragg angle of the
reection (h k l), re = e2=mec

2 is the classical radius of electron, V is the unit cell
volume, C = 1 for � polarization and C = j cos 2�Bj for � polarization, Fhkl =
Shkl�(f0+f 0), and Shkl is the crystal structure factor, f0, f

0 are the atomic scattering
factor and the real part of its dispersion correction, e�W is square root of the Debye-
Waller factor.
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Figure 3.6: The intrinsic Darwin width for �-polarized incident X-ray. In
the legends, \even" and \odd" refer to even reections (the Miller indices
are all even numbers) and odd reections (the Miller indices are all odd
numbers).

The dependence of ! on Bragg angle, thus on the order of reection, is a crucial
factor in choosing proper reections for a monochromator. The width also depends on
X-ray energy, its polarization, the crystal structure, and the temperature of crystal.
For silicon crystal, we have plotted the intrinsic Darwin widths in Fig. 3.6 and Fig. 3.7
for two di�erent energies, 23880 eV and 14413 eV (the nuclear resonant energies for
119Sn and 57Fe respectively), at two temperatures, 298 K and 121 K. There are a
couple of observations we can make from these �gures which are true in general. First
of all, for higher energy the Darwin widths are lower at comparable Bragg angles.
Second, lowering temperature will increase the width more noticeably for high order
reections. Third, the even-order reections generally have larger widths. This is
because of that silicon has the diamond type structure and its geometric structure
factor Shkl is equal to 8 for even reections and 4(1 + i) for odd ones. For the very
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same reason, the even reections also have relatively higher reectivities. The fourth
interesting point is that for both �- and �-polarized beams the width decreases to a
minimum as the Bragg angle increases before it increases again as the Bragg angle
approaches 90Æ. The temperature dependence of the intrinsic Darwin width can be
evaluated from Eq. (3.3),

�!

!
=
�
��(2 + tan2 �B)�W (2�� x

T
)
�
�T (3.4)

where

x =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

3:2898
y2

4
+ 1:6449

for y =
�D

T
> 4:18

1� y2

36
+

y4

1200

1 +
y2

36
� y4

3600

for y =
�D

T
< 4:18

�D is the Debye temperature of the crystal, which for silicon is 543 K [45], and � is
the linear thermal expansion coeÆcient2. In above derivation, we use the following
approximation for Debye-Waller factor in a harmonic model,

W = 3
�h2k2=2m

kB�D

T

�D
�(y) (3.5)

where

�(y) =

8>>>>><
>>>>>:

y
4 +

1:645
y for y =

�D

T
> 4:18

1 + y2

36 �
y4

3600 for y =
�D

T
< 4:18

For silicon at room temperature, � = 2:56�10�6K�1 [47]. At 23880 eV X-ray energy,
room temperature, for silicon reection (4 0 0) (�B = 11:02Æ), �!=! = �1:77 �
10�4�T ; for (12 12 12) reection (�B = 83:48Æ), �!=! = �4:85 � 10�3�T . These
numbers demonstrate that the Darwin width is not sensitive to small temperature
variations.

As mentioned before, the intrinsic width can be changed by asymmetric di�rac-
tion. The concept of asymmetric di�raction is shown in Fig. 3.8. The asymmetry
angle, �, is the angle between crystal surface and the di�racting crystallographic

2An empirical formula of � for Si in the temperature range 120 K to 1500 K can be found in
Ref. [46].



35

0 10 20 30 40 50 60 70 80 90
Bragg angle

0.01

0.1

1

10

D
ar

w
in

 w
id

th
 (

m
ic

ro
-r

ad
)

14413 eV, 298 K, even
23880 eV, 121 K, even
23880 eV, 298 K, even
14413 eV, 298 K, odd
23880 eV, 121 K, odd
23880 eV, 298 K, odd

Figure 3.7: The intrinsic Darwin width for �-polarized incident X-ray. In
the legends, \even" and \odd" refer to even reections (the Miller indices
are all even numbers) and odd reections (the Miller indices are all odd
numbers).

planes. It is de�ned in such a way that �B +� is the incident angle of X-ray. The an-
gular acceptance !o to the incident beam and angular divergence !h of the di�racted
beam are changed from the intrinsic Darwin width ! by

!o =
!p
b

(3.6)

!h = !
p
b (3.7)

where b is the asymmetry factor de�ned as following

b =
sin (�B + �)

sin (�B � �)
(3.8)

By simple geometry argument we can �nd the relation between the sizes of incident
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and reected beams,

Sh = So=b (3.9)

From the above equations, we can verify the relationship between angular divergences
and the beam sizes for the incident and di�racted X-ray beams,

!hSh = !oSo (3.10)

α<0

Bθ
ω 0

ωh

crystallographic planes

crystal surface

Figure 3.8: Asymmetric di�raction for a mono-energetic X-ray beam.

Transmission of X-rays through a series of crystals can be described by a graphic
method called the DuMond diagram [48]. It is a two dimensional energy{angle space
representation of the X-ray beam anywhere along the path through a series of crystals.
It plots ��=� vs. � � �B, using the linearized Bragg's law,

��

�
= �� cot �B ; (3.11)

since the angular range of such plots is usually in �rads or tens of �rads. The allowed
energy{angle space region for an X-ray beam to be reected by a crystal is a stripe
with a width of ! in the �-direction, which resembles the expanded diagram in �gure
3.4. At the incident beam side of the crystal, the Darwin width ! = !o, while at the
reected beam side, ! = !h. The DuMond diagram between two crystals has two
overlaid stripes representing the reected beam of the �rst crystal and the incident
beam of the second one, Fig. 3.5 has two examples. By the correspondence of the
DuMond diagrams before and after a crystal, a DuMond diagram at any point in the
system can be projected into a diagram at a di�erent point. In such manner, we can
project all the crystal reections into a single DuMond diagram at any point along
a series of crystals. In this diagram the common area of all stripes represents the
part of energy{angle space of an X-ray beam that will be reected through all these
crystals, i.e., it represents the beam transmitted through the system.
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In theory, the behavior of an X-ray beam through an optical system should be
studied in its full phase space as discussed in Ref. [43, 44]. However, at a third-
generation synchrotron radiation facility, X-ray beams from an insertion device are
highly collimated in both vertical and horizontal directions. So, it is usually suÆcient
to treat the problem in the reecting plane only, which often is the vertical plane.
The characteristics of a monochromator can be shown in its reectivity pro�le in �{�
space, where we are concerned only with the vertical angle and energy of the X-rays.
This is an approximation to the full phase-space approach [43, 44]. It is justi�ed due
to the very small horizontal divergence of the X-ray beam from an undulator. The
change of Bragg angle for the X-ray having a small horizontal angle of � from the
center of the beam is

��B = ��2

2
tan �B (3.12)

At the beamline where the later on described monochromators are designed for, the
horizontal divergence is about 40 �rad. Thus � = 2� 10�5, and ��B is on the order
of 10�10 which is quite negligible on the scale of �rad. So the horizontal divergence
is not a concern and we will discuss characteristics of monochromators only in the
energy { vertical angle space. In the following discussions, we also assume that the
crystals are large enough or the X-ray beam is slit down so that the location of
beam hitting the crystal does not matter. These assumptions allow us to discuss
monochromator in terms of only two variables, angle and energy. A thorough study
of at crystal monochromators can be found in Ref. [44].

3.3 High Resolution Monochromator for 24 keV X-rays

After the �rst observation of nuclear resonant scattering of 57Fe using synchrotron
radiation, attempt has been made to extend the study to 119Sn. A nested channel-cut
monochromator for 119Sn was reported [7] which used Si(3 3 3) and Si(5 5 5) reec-
tions and had an energy resolution of 23 meV with an angular acceptance of 7 �rad.
It was used in the �rst observation of the 119Sn nuclear resonance in a nuclear for-
ward scattering experiment with synchrotron source [15]. The main purpose of a
monochromator in such cases is to reduce the energy bandwidth of incident X-ray
beam to improve the signal-to-noise ratio. In order to study inelastic nuclear reso-
nant scattering, a higher energy resolution is needed since the phonon features are
typically on the scale of meV .

To achieve high energy resolution, we ought to use the highest order reection
possible in silicon. Table 3.1 lists four such reections for 23.880 keV , the X-ray
energy of 119Sn resonance. Even though the largest Bragg angle is 85.55Æ associated
with two odd-order reections, we choose to use (12 12 12) because it has the same
Darwin width but higher reectivity due to the fact that it is an even-order reection.
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Table 3.1: The four highest order reections for 23.880 keV X-rays in
silicon at room temperature. The intrinsic Darwin width ! and reectivity
are listed for �-polarized beam only.

reection �B !(�rad) reflectivity cot �B

(12 12 12) or (20 4 4) 83.48Æ 0.28 0.754 0.114

(17 11 5) or (19 7 5) 85.55Æ 0.28 0.667 0.0778

It has the additional bene�t of being in an easy to �nd orientation (1 1 1). However,
it should be noted that the energy resolution will be about 46% wider from the cot �B
term. In the �rst attempt to achieve a few meV resolution at this energy, the ux
throughput is also an important consideration. With the choice of (12 12 12) over
(19 7 5) for example, the spectral ux is about 14% higher due to the di�erence in
reectivities.

The diÆculties in making high resolution monochromators for X-rays with energy
above 20 keV are rooted in the narrow angular acceptances of high order reections.
This is evident from the numbers in Table 3.1. Even though the narrow angular
acceptance is advantageous in terms of energy resolution, it limits the transmitted
X-ray intensity and may prevent any practical use of the monochromator. The small
angular acceptance has two adverse e�ects. One is just that the crystal may not ac-
cept the full beam. The narrow angular acceptance also puts stringent requirements
on mechanical control and temperature stability. With one (12 12 12) reection alone,
the energy resolution is about 42 meV according to Eq. (3.2) where an incident beam
divergence of 15 �rad is assumed. This was the initial estimate of the vertical beam
divergence at APS 3-ID undulator beamline with the high-heat-load monochromator
crystals used at the time the �rst milli-eV monochromator at 23.880 keV was de-
signed. To use a slit to reduce the beam divergence from 15 �rad to about the size
of the angular acceptance of 0.3 �rad of the crystal is too ineÆcient in terms of ux.

Here we can employ the principle of asymmetric di�raction to overcome this se-
vere mismatch between the incident beam divergence and the angular acceptance of
high order reection. We know that an asymmetrically di�racting crystal with the
asymmetric factor b smaller than one (� < 0 in Fig. 3.8) will have larger acceptance
!o and smaller divergence !h (see Eqs. (3.6) and (3.7)). So we can add a second
crystal placed before the high order reection crystal to \funnel" the more divergent
incident beam into a smaller angular range. Its order of reection and asymmetry
factor b are chosen so that its !o and !h match the incident beam divergence and the
angular acceptance of the high order reection respectively.

The energy resolution of a monochromator is measured by nuclear forward scat-
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tering. The experimental setup is shown in the insert of Fig. 3.1. The undulator
produces an x-ray beam with a broad energy spectrum and a high power density.
A water-cooled diamond (1 1 1) premonochromator is used to reduce the bandwidth
to 2.6 eV centered around 23.880 keV . The sample is a tin metal foil about 180�m
thick and is 95% enriched in 119Sn. An avalanche photodiode (APD) detector is
used because of its nanosecond time resolution and large dynamic range [8, 9, 10].
It is placed behind the sample to measure the coherent nuclear forward scattering of
23.880 keV X-rays. Timing is employed to look for delayed nuclear resonant events
only. The delayed counts are integrated in a time window of about 25 ns to 85 ns
after the synchrotron x-ray pulse. The tin foil is placed perpendicular to the beam.
The distance between the sample and the detector is suÆcient to avoid signals due
to incoherent nuclear resonant scattering. In this setup, essentially no delayed trans-
mission occurs if the incident x-ray energy is o� resonance. When the x-ray energy is
on resonance, the elastic nuclear scattering from the sample is coherently enhanced
in the forward direction. Thus the energy response of the sample in the forward
direction, as seen by the detector, has a width on the order of the resonant linewidth,
which is 25.5 neV . On the scale of meV , this narrow width acts like a very �ne and
�xed energy probe and permits very accurate measurement of the monochromator
resolution. The energy of the x-ray beam that passes through the monochromator is
determined by the angles of the crystals by

ÆE

E0

=
Æ�1 � Æ�2

tan �B1 + tan �B2
(3.13)

for the (++) geometry. The resolution function of the monochromator is then mea-
sured by scanning the crystal energy, i.e., rotating the second crystal relative to the
�rst one. Such measured energy response function of the monochromator is actu-
ally its resolution function with the energy scale reversed, as can be seen from the
following equation,

Rm(�) =
Z
Æ(�0)R(�0 � �)d�0 = R(��) (3.14)

where the Æ-function represents the narrow nuclear resonance.

3.4 A 3.6-meV Monochromator for 119Sn

For the �rst attempt3, we have chosen (4 0 0) with b = 0:1. The parameters of this
two-crystal monochromator are listed in Table 3.2. With a modest asymmetry angle,
� = �8:9Æ, it matches the assumed incident beam divergence fairly well, but does
not quite match the acceptance of (12 12 12). Its resolution can be estimated to be
4.9 meV under the assumption of a widely divergent beam, that is, the incident beam

3A description of this monochromator is published as Ref. [49].
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Table 3.2: The parameters for the 3.6-meV monochromator.

reection �B � b !o(�rad) !h(�rad)

(4 0 0) 11.02Æ -8.9Æ 0.108 13.9 1.50

(12 12 12) 83.48Æ 70.53Æ 1.96 0.20 0.39

1cm

Figure 3.9: The schematic of a 3.6 meV two-crystal monochromator for
23.880 keV X-rays with reections Si(4 0 0) { (12 12 12). For a list of pa-
rameters see Table 3.2.

has a uniform distribution in the interested region in �{� space. Later we will see
that the actual resolution also strongly depends on the pro�le of the incident beam
in �{� space.

A point worth noting is that the (12 12 12) reection is also di�racting asymmet-
rically with b > 1. For the purpose of matching the angular widthes, its factor b
should also be made smaller than one so that there is even better match between
the two reections. However, as mentioned before, accompanying the changes in an-
gular width an asymmetric di�raction also alters the beam sizes. With b = 0:1 for
the �rst reection, the beam after the �rst reection will be ten times as large as
the incident beam. The typical incident beam size is about 0.5 to 1 mm. In many
experiments samples cannot be made very large, or detector is not large enough or
it has to be put very close to the sample, and sometimes grazing incidence is used
especially for thin �lm experiments. So we want to keep the beam size small and
choose b > 1 for (12 12 12) to partially compensate the beam enlargement caused by
the �rst asymmetric di�raction.

The schematic of this two-crystal monochromator is shown in Fig. 3.9. The �nal
exiting beam from this monochromator has a vertical size �ve times that of the
incident beam and is going backwards with an angle of 9Æ from the horizontal plane.
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Figure 3.10: The calculated transmission function of the monochromator
Si(4 0 0) { (12 12 12). The peak reectivity is 0.734 and the contour is
drawn at half the maximum reectivity.

In comparison to a channel-cut design [7, 50], which preserves the beam direction and
size, this might cause inconvenience in sample and detector positioning. However,
this two-crystal design avoids the losses from two more reections in a channel-cut
design, and does not su�er from the adverse e�ect of temperature di�erences between
the reecting surfaces of channel-cut crystals.

As discussed before, the characteristics of a monochromator can be shown in its
reectivity pro�le in �{� space. In Fig. 3.10 it is shown for this monochromator the
reectivity as a function of vertical angle and energy. The angles shown in the �gure
are those on the incident side of the (4 0 0) reection. The contour plot on the top
is similar to the DuMond diagram at this incident face of (4 0 0). From the �gure
we can clearly see the mismatch between the widths of these two reections. The
slender stripe is for the (12 12 12) and its width is signi�cantly smaller than the total
expand of the contour in angle which is basically determined by the width of the
(4 0 0) reection.

The result of the resolution measurement is presented in Fig. 3.11 along with a
simulation. The energy resolution is determined to be the full width at half maxi-
mum (FWHM) of the measured energy response function, which is 3.6 meV . The
simulation is done by combining the transmission function of the monochromator
(Fig. 3.10) and an incident beam pro�le in the �{� space. Here the incident beam is
assumed to have a Gaussian vertical angular pro�le of 12 �rad FWHM, which is the
measured angular divergence. The measurement uses two Si(11 11 11) channel-cut
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Figure 3.11: The measured energy response function (dots with error bars)
compared with a simulation (solid line). E0 = 23:880 keV is the nuclear
transition energy of 119Sn. The FWHM of the measured energy response
function is 3.6 meV .

crystals one after another in a dispersive geometry, which provides 0.1 �rad angular
resolution and has an energy bandwidth of 0.6 meV . It is done at X-ray energy of
22.649 keV . It turned out to be narrower than the initial estimation of about 15 �rad.
The transmitted beam pro�le is shown in Fig. 3.12. The simulated energy resolution
function is obtained by �rst integrating the curve in Fig. 3.12 over the angle and
then reversing the energy scale. The FWHM of this simulated resolution function is
3.54 meV . By comparing Fig. 3.12 and Fig. 3.10, we can see that the result we will
get from a monochromator, e.g. the energy resolution, depends on the characteristics
of the monochromator as well as on the incident beam. It is our experience that the
performance of a monochromator is a�ected quite strongly by the performance of
upstream optics, e.g., the high-heat-load premonochromator.

The throughput of the monochromator is measured by placing ionization chambers
before and after the high-resolution monochromator. The ux of the x-ray beam
before the high-resolution monochromator was measured as 8:3 � 1012 photons per
second per 100 mA storage ring current in a measured energy bandwidth of 2.6 eV .
This gives a spectral ux of 3:2 � 1012ph=s=100mA=eV . After the monochromator,
we obtained 9:0�108ph=s=100mA in the energy bandwidth of 3.6 meV , or a spectral
ux of 2:5 � 1011ph=s=100mA=eV . These numbers are derived from the current
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Figure 3.12: The transmitted beam pro�le of an incident beam with a
Gaussian vertical angular pro�le of 12 �rad FWHM through the Si(4 0 0)
{ (12 12 12) monochromator.

readings from ionization chambers owing He and N2, respectively. It should be
pointed out that both the incident beam and the beam transmitted through the
monochromator have structure in their respective energy-angle space. So the above
mentioned \spectral ux" | that obtained by taking the total ux and dividing it by
the energy bandwidth | is only an averaged characteristic of the beam considered.
But due to the signi�cant di�erence in the bandwidths, only a small energy region
of the incident beam, which is comparable to the monochromator bandpass, a�ects
the transmission through the monochromator. As a result of this, the local spectral
ux of that part of the incident beam should be used to compare with that of the
beam transmitted by the monochromator. Lacking such detailed knowledge of the
incident beam, we content ourself with the average spectral ux. The eÆciency of
this optical element can be understood as the ratio of spectral uxes before and after
the monochromator. From the above numbers, we obtain an eÆciency of 8%. To
simulate this measured eÆciency we assume the incident beam has a Gaussian pro�le
in the energy-angle space with FWHM of 12 �rad in angle and FWHM of 2.6 eV
in energy and take the two dimensional integral of the curve in Fig. 3.12 and the
integral of the incident beam pro�le. The integrals are regarded as the total uxes
of the transmitted and the incident beams respectively. Then dividing them by the
corresponding energy bandwidth gives the averaged spectral uxes, from which the
eÆciency is estimated to be 12%.
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Table 3.3: The parameters for the 1-meV monochromator.

reection �B � b !o(�rad) !h(�rad)

(4 4 4) 19.34Æ -18.47Æ 0.0248 10.3 0.25

(12 12 12) 83.48Æ 70.53Æ 1.96 0.20 0.39

1cm

Figure 3.13: The schematic of the 1 meV two-crystal monochromator for
23.880 keV X-rays with reections Si(4 4 4) { (12 12 12). For a list of pa-
rameters see Table 3.3.

3.5 A 1-meV Monochromator for 119Sn

The previously described 3.6 meV monochromator for 24 keV X-rays is not very
eÆcient due to the angular mismatch between the �rst and the second reections. In
light of the fact that the beam divergence at the beamline is only about 12 �rad (verti-
cal) and may become even smaller as the high-heat-load monochromator is improved
(the intrinsic width of symmetric diamond (1 1 1) reection, which is used as the
premonochromator, is 7.24 �rad), the design for this high resolution monochromator
can be improved by using a reection of higher order than (4 0 0). Table 3.3 lists the
parameters for a new monochromator [44], which is shown in Fig 3.13. Its DuMond
diagram (Fig 3.14) clearly shows the improvement over the previous monochromator.
Its transmission function is shown in Fig. 3.15. If the same incident beam condition
as assumed in Section 3.4 is used, we simulate the transmitted beam pro�le as shown
in Fig. 3.16. With this incident beam, it has an energy resolution of 0.80 meV and
an eÆciency of 44%. The increased eÆciency or spectral ux is the direct result of
the better angular acceptance matching between the two reections.

Its resolution function is measured and the result is shown in Fig. 3.17. The
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Figure 3.14: The DuMond diagrams at the incident faces of �rst crystal for
both Si(4 0 0) { (12 12 12), on the lift, and Si(4 4 4) { (12 12 12), on the right.
The dashed lines represent the �rst crystal and solid lines Si(12 12 12).

measured resolution is 0.98 meV and is wider than the simulation and the measured
total ux is also about forty percent lower. In an attempt to better monitor the
crystal temperature, a hole is drilled through beneath the surface of the Si(4 4 4)
crystal to put thermistor in. The hole has a diameter of about 2.5 mm and is 1 mm
under the center of the surface. Its residual strain or its mere presence might cause
deformation of the part of the crystal di�racting X-ray beam. The other possibility
could be the quality of the silicon boule used to make this crystal.

Nevertheless, we obtain a total ux of about 3 � 108ph=s=100mA after this
monochromator with an incident beam size of 0.4 mm vertical by 3 mm horizontal.
It provides adequate ux for conducting nuclear resonant scattering experiments.
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Figure 3.15: The calculated transmission function of the monochromator
Si(4 4 4) { (12 12 12). The peak reectivity is 0.705 and the contour is
drawn at half the maximum reectivity.

Figure 3.16: The transmitted beam pro�le of an incident beam with a
Gaussian vertical angular pro�le of 12 �rad FWHM through the Si(4 4 4)
{ (12 12 12) monochromator. The peak reectivity is 0.704 and the contour
is drawn at half the maximum reectivity.
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Figure 3.17: The measured energy response function (vertical bars) com-
pared with a simulation (solid line). The vertical bars represent the error
bars. E0 = 23:880 keV is the nuclear transition energy of 119Sn. The
FWHM of the measured energy response function is 0.98 meV . The width
of the simulation is 0.80 meV .
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Table 3.4: The parameters for the 1-meV monochromator with a \beam
contractor".

reection �B � b !o(�rad) !h(�rad) reectivity

(4 4 4) 19.34Æ -18.47Æ 0.0248 10.3 0.25 0.983

(12 12 12) 83.48Æ 70.53Æ 1.96 0.20 0.39 0.754

(1 1 1) 4.75Æ 4.12Æ 14.02 2.89 40.6 0.990

1cm

Figure 3.18: The schematic of the 1 meV two-crystal monochromator for
23.880 keV X-rays in 3-crystal setup, with reections Si(4 4 4) { (12 12 12)
{ (1 1 1). For a list of parameters see Table 3.4.

3.6 An X-ray Beam Contractor

One tradeo� of this 1 meV monochromator is its big exiting beam size, which is
obviously seen in Fig. 3.13. Use the asymmetry parameters b from Table 3.3 in the
equation of beam size, Eq. (3.9), we �nd that the exiting beam has a vertical beam
size 20.6 times that of the incident beam. This is a practical problem as we discussed
before (page 40). One way to solve this problem without using the channel-cut design
is to use a third crystal, which is asymmetrically cut to reduce the beam size. We
want its asymmetry factor close to 20 and its angular acceptance larger than the
exiting beam divergence from the �rst two crystals. To get maximum reectivity and
angular acceptance, we choose Si(1 1 1) reection, the lowest order reection in silicon
with �B = 4:75Æ for 23.880 keV X-rays. The �nished crystal has an asymmetry angle
of 4.12Æ, which corresponds to an asymmetry factor of 14.02. With this third crystal,
the �nal vertical beam size is only 1.47 times that of the incident beam. With this



49

asymmetry factor, it has an angular acceptance of 2.89 �rad, which is much larger
than the 0.39 �rad exiting beam divergence from the second reection (see Table 3.3).
The large angular acceptance and 99% reectivity of this beam contractor ensure that
it has only minute e�ects on the transmission function of the monochromator and
thus leaves its energy resolution and spectral transmission basically unchanged. The
expanded table of parameters for this setup is shown in Table 3.4. The arrangement
of three crystals is illustrated in Fig. 3.18. This set-up has been successfully used in
measurements of thin �lms and with high pressure diamond anvil cells.

3.7 Energy Scale Generation

The operation of at crystal monochromators involves turning one or both crystals
relative to the incident beam. The way to translate the angular readings into relative
energies is prescribed in Eq. (3.13), from which we can see that the operation of
the high-resolution monochromator requires very precise mechanical control of the
movements of the crystals. For example, to scan the resolution function shown in
Fig. 3.11, the second crystal moves in angular steps of 0.07 �rad, which corresponds to
energy steps of 0.2 meV . For monochromators with higher energy resolution the step
size will be even smaller. We mount the crystals onto Kohzu KTG15 high resolution
rotation stages which have a minimum step size of 0.025 �rad and a total range of
4Æ. These rotation stages are also coupled to Heidenhain ROD800C angle encoders
with AWE1024 interpolator electronics. They have a resolution of 0.175 �rad, and
are used to calibrate long range angular motions.

A

B
C

O

γ
β

α

Figure 3.19: Misalignment of the rotaion axis. AB is the rotation axis,
OB represents the incident X-ray beam, and points A, B, and C de�ne the
crystallographic plane. AC ? AB, OC ? plane ABC.

Care must also be taken to make sure that the motor readings, whose changes are
denoted as Æ�1 and Æ�2, represent the true rotations of the crystallographic planes
relative to the X-ray beam. In two cases this may not be true. One is if the rotation
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axis is not perpendicular to the incident beam. The other is when the rotation axis is
not in the crystallographic plane. The �rst case is illustrated in Fig 3.19. The relation
among �, the true Bragg angle, �, the rotation angle, and , the angle between the
incident beam and rotation axis, is,

sin� = sin� sin  (3.15)

from which we can �nd for small changes in � and �,

�� = ��

"
1� cos2 

cos2 �

#1=2
(3.16)

It tells us that when  is not 90Æ the measured angular change is bigger than the
real change of Bragg angle (�� < ��) and the deviation is more pronounced for
higher Bragg angles when � is close to 90Æ. For Si(12 12 12) reection at 23.880 keV
(� = 83:48Æ), 1Æ misalignment, i.e.,  = 89Æ, results in 1% di�erence between �� and
��; and 2Æ gives 5%.
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Figure 3.20: Misalignment of the tilt axis. AB is the rotation axis, AC is
the tile axis, OA represents the incident X-ray beam. Points A, B', and C
(or C') de�ne the crystallographic plane. AC ? AB, OC ? plane ABC,
and � is the angle between AC and AO, the rotation angle. The tilt angle
is � . OC 0 ? plane AB'C, the crystallographic plane. OC 0 ? CC 0, and �
is the angle between AC 0 and AO, the true Bragg angle.

The second type of misalignment, as shown in Fig 3.20, can be adjusted by tilt
rotation. The tilt axis is perpendicular to the rotation axis and is in the crystallo-
graphic plane. Rotation along this axis moves the di�racting plane in and out of the
vertical plane. For this case, we have the following relation,

sin� = sin� cos � (3.17)
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where � is the tilt angle. Then we have

�� = ��

"
1� sin2 �

cos2 �

#1=2
(3.18)

The expression resembles the one for the �rst case, so similar arguments follow for
the tilt misalignment too. Again, for Bragg angle of � = 83:48Æ, � = 1Æ will cause
�� to be 1% bigger than ��. These misalignment e�ects will introduce systematic
errors in generating energy scales from the motor readings by Eq. (3.13). The overall
e�ect can be approximated as a scaling factor of the energy scale generated. It will
a�ect the accuracy at large energy di�erences, e.g., the high energy modes measured
in an INRS experiment.

One other e�ect we have to consider concerns the temperature stability of
monochromator crystals. A temperature variation will cause a slight change in lattice
spacing d and will in turn a�ect the Bragg angle at a �xed energy, the Darwin curve
width, and the refractive correction to the Bragg angle. In Section 3.2 we have shown
that the Darwin width is not sensitive to small temperature variations. Thus we can
assume the characteristics of monochromator, i.e. its transmission function, is not
a�ected by small temperature changes. What is actually a�ected is the center en-
ergy of the X-ray beam which passes through the monochromator. The temperature
variation has the apparent e�ect of changed angles of the monochromator crystals,
which causes a shift in energy. This e�ect of shift in energy can be expressed as

ÆE

E0

=
��1 +��2

tan �B1 + tan �B2
(3.19)

where

�� = ��B +��

��B = �� ÆT tan �B

�� = �� ÆT (2 + tan2 �B) �

Here �� is used to distinguish from Æ� in Eq. (3.13), which is the actual change of
the crystal angle by moving motor. And ��B is the change in Bragg angle and ��
the change in the refractive correction. Since � is on the order of �rad (i.e. 10�6),
�� � ��B. It is suÆcient to consider the changes in Bragg angle only. In case of
our (4 0 0){(12 12 12) monochromator, a 17 mK change in the temperature of second
crystal, ÆT2, will cause an energy shift of 1 meV of the X-rays pass through the
monochromator.

Besides taking certain measures to improve the temperature stability of the crys-
tals, in an experiment that does not have high count rate, we can take several shorter
scans to minimize the temperature e�ect and later combine these data sets into a
single spectrum to get better statistics. Even then, sometimes there is still going to
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be small temperature drift during each short scan. In such cases we can use Eq. (3.19)
to correct energy scale obtained by Eq. (3.13). To monitor the crystal temperatures,
thermistors are attached to them, and both the temperature and the angle readings
are used to determine the energy scale according to

ÆE

E0
=

Æ�1 � Æ�2 � � � (ÆT1 tan �B1 + ÆT2 tan �B2)

tan �B1 + tan �B2
: (3.20)



Chapter 4

Applications to Tin Materials

Tin is an element which is in the same group as carbon and silicon and can be
found in many inorganic and organic compounds and materials. Its dynamics inside
these materials will provide us better understanding of their properties. Inelastic
nuclear resonant scattering method had been successfully applyed to iron materials.
Our task was to extend this technique to 119Sn. The binding strength of Sn varies
signi�cantly among Sn compounds. A measure of this strength is the recoilless factor,
which is valued at 0.66 for CaSnO3 and can be as low as 0.03 for white tin at room
temperature. We have performed INRS experiments on several Sn materials, and
established that this technique is applicable to a variety of Sn materials, including
metal, alloy, oxides, and superconducting compounds, in various forms, powders,
�lms, and inside high pressure cells. Through these studies, we have tested the
lower limits of f -factor, concentration and total number of resonant isotopes for
this technique, which can be used to assess the feasibility of future experiments
with other samples. From the measurements we have done, we obtained Sn-partial
phonon density of states of these compounds for the �rst time. They will increase
our understandings of their dynamical and thermodynamical properties and will be
useful in theoretical modeling of these systems.

4.1 Sn Oxides and Count Rate Estimation for INRS

Three tin oxides, SnO, SnO2, and CaSnO3, were measured by INRS. They are
powder samples and enriched over 90% in 119Sn. The experiments were done at room
temperature. Initially, all three were measured using the 3.6 meV monochromator
described in Section 3.4. The spectra are shown in Figures 4.1 and 4.2. Later,
SnO and SnO2 were measured again using the monochromator in Section 3.5 with
1 meV resolution. SnO samples under high pressure were also measured with 1 meV
resolution. The 1 meV spectra of SnO and SnO2 are shown in Figures 4.3 and
4.4. No dependence on incident photon wave vector is present because for powder
samples this dependence is averaged out. Comparing the spectra of same sample with
di�erent resolutions, we see clearly the e�ect of energy resolution, the relative height
of elastic peak to the phonon part of the spectrum increases as resolution improves.
This agrees with the estimate we did in Section 2.7 (see Eqs. 2.78 and 2.76). The
energy scan ranges in these scans are about �80meV , that is more than twice the
Debye temperature for Sn sublattice in these oxides. The scan step size is generally

53
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Table 4.1: Recoilless factor f , mean kinetic energy per atom, mean force
constant, and mean displacement of Sn atoms of listed Sn oxides, derived
from INRS measurements.

compound f T K u

and (resolution) used (meV ) (N=m) (�A)

SnO (3.6 meV ) 0.28(4) 13.1(7) 208(8) 0.16

SnO (1.2 meV ) 0.271(8) 13.5(1) 178(4) 0.16

SnO2 (3.6 meV ) 0.631(9) 14.2(3) 462(26) 0.097

SnO2 (1.2 meV ) 0.629(3) 13.97(6) 371(6) 0.097

CaSnO3 (3.6 meV ) 0.657(7) 14.1(2) 377(14) 0.093

chosen to be one third of the energy bandwidth of monochromatized X-ray beam.
For the 3.6 meV experiments, the step size is 1 meV for SnO2 and CaSnO3, and
0.5 meV for SnO. The step sizes in the 1-meV experiments are 0.25 meV .

There is only one equivalent site for Sn atoms in these compounds, as can be
seen in their crystal structures (Figures 4.6, 4.8, and 4.10). Thus, as discussed in
Section 2.5, the phonon excitation probability function can be separated into single
and multi-phonon contributions, and this is shown in the �gures. For SnO the multi-
phonon contribution is relatively strong, on the same order of magnitude compared
to single phonon part. This reects the fact that SnO lattice is soft. It is also
obvious from the derived partial phonon density of states, Figures. 4.5, 4.7, and 4.9.
The Sn partial DOS in SnO2 and CaSnO3 extends to about 40 meV , while it stops
at 25 meV for SnO. The recoilless factor f , mean kinetic energy, and mean force
constant of Sn atoms for these sample are derived from the spectra by the moment
sum rules in Section 2.4. They are listed in Table 4.1. Also listed are the square
roots of the mean square displacements derived from the recoilless factor f .

The partial DOS for SnO2 and CaSnO3 have almost identical peak positions and
very similar structures (Figures 4.7 and 4.9). This may be explained by the fact
that Sn atoms have similar local environments in both compounds, despite the very
di�erent structures and symmetries of the two lattices. The Sn atom is centered at an
oxygen octahedron in both compounds, though the octahedron is slightly stretched
in one direction for SnO2. The bond lengthes are also close. In perovskite CaSnO3,
the six Sn{O bonds have a length of 1.96 �A (Fig. 4.10), while in SnO2, there are
four Sn{O bonds in a plane which is 2.052 �A, and two perpendicular to the plane
with length of 2.057 �A (Fig. 4.8). This suggests that the dynamics of Sn atoms is
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mostly determined by the surrounding oxygen octahedron, and in lattice dynamics
calculations only the nearest neighbor Sn-O force constants are important for Sn
atoms.

In Fig. 4.5, we show a shell model calculation of partial phonon density of states of
Sn sub-lattice in SnO [51]. In this model, Buckingham potential, V (r) = ae�br�c=r6,
between ions is used and force constants are taken from lattice dynamics study of
SnO2 [52] and then adjusted to �t optical modes frequencies measured by IR and
Raman experiment [53]. The model calculation has the basic features of the DOS we
measured. However, a similar calculation performed for SnO2 does not yield DOS
which resembles the result from INRS measurement.

Before we go on with more samples, let's compare the experimentally observed
intensity with the estimations by Eq. (2.76). For SnO, the density is 6.45 g=cm3. For
highly enriched sample, this equals to a density of nuclear resonant isotope of about
2.8 �1022cm�3. Using this number together with nuclear resonance properties listed
in Table 2.1 and f factor, Debye temperature derived from the experiment, we have
the following estimation of intensity for the phonon part of the spectrum,

Im(E 6= 0) = 3� 10�4 � I0

where I0 is the incident beam ux and � represents the detection eÆciency. The
detector eÆciency is assumed to be 6% (the absorption rate of 23.88 keV X-ray
in 100 �m silicon). And as discussed before, for 119Sn inelastic nuclear resonant
experiments, it is dominantly the nuclear uorescence, ie., 23.88 keV X-rays, that
are detected. With a internal conversion coeÆcient of 5.12, this gives another factor
of 6. We can also assume about one third of total solid angle is covered by the
detector. The incident beam ux was about 3 �108 photons per second. Plugging in
these numbers, we will have 300 counts per second. In Fig. 4.1 panel (d), we can see
about 3000 counts average for the phonon part, dividing it by the counting time of 20
second, we have 150 counts per second. That is on the same order as the estimate. A
similar estimate for SnO2 gives 100 counts per second, while the averaged intensity
of phonon part in panel (e) of Fig. 4.1 is about 25 counts per second. So we can use
Eq. (2.76) as a fairly good estimate for INRS experiments.
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Figure 4.1: INRS spectra for SnO (a) and SnO2 (b) with 3.6 meV resolu-
tion. E is the X-ray energy and E0 is the nuclear transition energy.
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Figure 4.3: INRS spectrum for SnO (a) with 1 meV resolution. Panel (b)
shows separated phonon excitation probability densities S1(E), S2(E), and
S3(E) plus the rest. E is the X-ray energy and E0 is the nuclear transition
energy.
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4.2 SnO under High Pressures

SnO has a second phase above 1.5 GPa, which is an orthorhombic structure with
space group Pm2n. INRS measurements were conducted for samples under 3.5 GPa
and 7 GPa pressures1. The sample size in the Diamond Anvil Cell (DAC) used is
about 200 �m in diameter and 20 �m in thickness. The sample is enriched over 90%
in 119Sn. That corresponds to only about 7 �1016 nuclear resonant isotopes in the
sample. With the help of a third crystal to reduced the vertical beam size after high
resolution monochromator, we are able to increase the ux density at the sample.
However, a good portion of the beam in horizontal direction is not being used and
a factor of 15 (3 mm beam size over 0.2 mm sample size) is lost in ux. Focusing
in both directions is necessary to utilize the full beam. The DAC uses beryllium
gasket and has two wide openings perpendicular to the X-ray beam path through
the sample region. Two APD detectors with active area of 100 mm2 are placed into
these openings. With this setup and incident ux about 3 �108 photon per second,
we have a count rate of 1 per second at the phonon peak.

The experiments were done at room temperature using 1.2 meV monochromator
with an additional third crystal to reduce the vertical beam size (see Section 3.5.
The energy scan range is �80meV and step size is 0.3 meV . Measured spectra and
normalized phonon excitation probability density functions are shown in Figures 4.11
and 4.12 for samples under high pressure. For comparison the data under normal
pressure is show in previous section in Fig. 4.3. Derived lattice dynamic properties
are listed in Table 4.2 and partial phonon DOS of Sn sub-lattice is shown in Fig. 4.13
together with that at ambient pressure. We observe signi�cant increase of f -factor
with increasing pressure. By going from ambient pressure to 3.5 GPa in phase II, the
phonon spectrum undergoes signi�cant changes besides a slight shift of all phonon
modes to higher energy. Among them, there is the disappearance of low energy modes
at about 6 meV and the appearance of new modes at 18 meV . It is also interesting
to see that the phonon spectra at two high pressures are quite di�erent too, though
they are supposed to be in the same phase. The most obvious is the broadening of
the optical phonon peak at about 25 meV . There are modes at 8 meV disappearing.

1These experiments were in collaboration with Prof. G. Wortmann and Dr. Rainer L�ubbers of
University of Paderborn, Germany, who provided the DACs.
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Table 4.2: Recoilless factor f , mean kinetic energy per atom, and mean
force constant of Sn atoms of SnO under di�erent pressures, derived from
INRS measurements. Also listed are estimated mean displacement of Sn
atoms.

pressure f T K u

(GPa) (meV ) (N=m) (�A)

0.1 MPa (ambient) 0.271(8) 13.5(1) 178(4) 0.16

3.5 GPa 0.40(2) 15.0(5) 251(63) 0.14

7 GPa 0.45(2) 13.5(4) 332(57) 0.13
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4.3 �-Sn and INRS with Low f-Factor Samples

Tin is a group IV element following C, Si, Ge and preceding Pb. Its bonding char-
acteristics lies on the border between covalency and metallic bonds. Under normal
condition tin is a metal with a (double) body-centered tetragonal crystal structure.
This phase is called �-Sn, or white tin. While it is a stable phase for tin under
normal temperature and pressure, Si and Ge are metallized into the structure under
pressure. At low temperature tin is more stable in its �-Sn phase (gray tin) which
has the diamond structure as C, Si, and Ge. The �-Sn is a semiconductor with zero
band gap. The phase transition under normal pressure happens at 13.2 ÆC.

Both an enriched and a natural Sn foil (�-Sn) were measured at room temperature
with 1 meV energy resolution. The energy scan range is �80meV and step size is
0.25 meV . Measured spectra are shown in Figure 4.14. The di�erence between the
spectra for enriched and natural sample is due to the elastic peak suppression e�ect.
By equations (2.76) and (2.78), the inelastic part of the spectrum is proportional to
the nuclear resonant isotope concentration n, while the elastic peak is proportional
to its square root. Thus by going from an enriched sample to a unenriched one, i.e.,
in the above �gure, from (a) to (b), the concentration is decreased and the inelastic
part is reduced more relative to the elastic peak. We see that the elastic suppression
e�ect is more serious for enriched sample.

For �-Sn at room temperature, the phonon excitation probability function cannot
be separated. The reason is that the lattice is very soft, with f factor estimated about
0.03, at room temperature the multi-phonon processes dominate. In Eq. (2.40), if
the higher order terms are not small compared with S1, then the sum is less sensitive
to it, as a result S1 can not determined reliably. Another diÆculty comes from the
fact that the elastic peak needs to be removed before the separation of multi-phonon
terms. However, all terms in Eq. (2.40) make contribution at E = E0, not just S0. In
the close vicinity of the elastic peak, S1 can be very well approximated by the Debye
model (Eq. 2.90), but multi-phonon terms depend on the whole phonon spectrum
and thus can not be estimated satisfactorily beforehand. So if multi-phonon terms
dominate single phonon term S1, the elastic peak can not be removed reliably, which
in turn prevents separation of single phonon term.

Clearly, f -factor puts a limit on the feasibility of INRS. We just see that data
analysis cannot be carried out for sample with f = 0:03. In next section we will
present another sample with low f -factor, f = 0:16 to be exact for �-Sn at room
temperature. We will see that it is possible to separate multi-phonon terms in that
case, where the higher order terms are almost of the same magnitude that of S1
(Fig. 4.16). To demonstrate the correlation between the signi�cance of multi-phonon
terms and value of f -factor, we can take a look at �gures of S(E) for three samples
measured, Fig. 4.16 for �-Sn with f = 0:16, Fig. 4.3 for SnO with f = 0:27, and
Fig. 4.4 for SnO2 with f = 0:63. For samples with very low f -factors at room
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temperature, in order to get phonon density of states, we can lower the sample
temperature, thus reduce the multi-phonon contributions and make the separation
of S1 term possible. Within the harmonic lattice approximation, phonon DOS is not
a�ected by temperature and lowing the temperature provides a solution to the above
problem.

High pressure INRS experiments were also done for �-Sn, with 3.6 meV resolu-
tion. At room temperature, �-Sn tranforms from a double body-centered tetragonal
structure to body-centered tetragonal at 9.2 GPa [54]. Our experiments were per-
formed at below (7.9 GPa) and above (15 GPa, 20 GPa) this transition pressure.
The DAC has a sample chamber of 200 �m in diameter and about 30 �m in thick-
ness. The spectra are shown in Fig. 4.15. Unfortunately, as mentioned above, the
overwhelming multi-phonon contributions at room temperature prevents further data
analysis. The sample put under high pressure is also highly enriched. The di�erent
appearances of the spectra under ambient and high pressure (the clear center peaks in
cases of high pressures) is due to the fact that in DAC the sample thickness (30 �m)
is less than electronic absorption length (105 �m) which determines the penetration
of inelastic resonant X-rays. So, the e�ective area density of resonant isotopes is
smaller than that under ambient pressure where the sample is an enriched Sn metal
foil about half millimeter thick. The elastic resonant penetration depth is so small
and the same in both cases, that the e�ective area density for elastic resonance is the
same and the elastic part of the spectra has same signal rate per beam cross section.
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4.4 �-Sn Film

The low temperature phase �-Sn has diamond crystal structure with lattice constant
of 6.49 �A. This phase can be stablized at room temperature if grown on lattice-
matched substrate. �-Sn �lms2 were grown on semi-insulating CdTe (1 0 0) sub-
strates by molecular beam epitaxy (MBE). The in-plane lattice mismatch of �-Sn
with CdTe (1 0 0) substrate was 0.18%. The substrate thickness was 1 mm. Prior
to depositing the �-Sn, a 3000 �A CdTe bu�er layer was grown on the CdTe (1 0 0)
substrate at 250 ÆC. For �-Sn the growth temperature was 0 ÆC. A typical growth
rate was 0.4 �A per second. The tin layer is 2000 �A thick and in single crystal phase
checked by in situ reection high-energy electron di�raction (RHEED). The �-Sn
(1 0 0) �lm grown on CdTe (1 0 0) has a (1� 1) reconstructed surface. The samples
are enriched in 119Sn over 95%. In order to increase the count rate, we put two such
�lms side by side along the X-ray beam direction and make X-ray beam incident at
a very shallow angle.

The electronic absorption length is 133 �m in �-Sn for 23.88 keV X-rays, and the
elastic resonant absorption length is only 0.24 �m. Since the �lms are only 0.2 �m
thick, all parts of the Sn layer contribute to INRS signals. For a 2000 �A thick �lm,
surface and interface constitute only a small part of the sample, we can say that what
we measure is the bulk property of �-Sn.

The INRS spectrum is shown in Fig. 4.16 with phonon excitation probability
densities. With an f factor of 0.16, �-Sn also has signi�cant multi-phonon contri-
butions, but not to the degree of preventing the separation of S(E). For �-Sn, the
derived lattice dynamic properties are listed in Table 4.3 and phonon DOS is shown
in Fig. 4.17 together with an ab initio calculation [55]. Coherent inelastic neutron
experiments were done and resulted in dispersions along a few high symmetry direc-
tions [56]. There were also theoretical calculations and modeling for lattice dynamics
of �-Sn [57]. Recently, there is an e�ort to apply ab initio electronic structure cal-
culation to examing the vibrational and thermodynamical properties of metals [55].
The calculation is based on direct total energy approach. Force constants are calcu-
lated for up to 8 nearest neighbors by the planar force constant method. The total
energy is based on electronic structure calculation in the Density Functional The-
ory in the Local Density Approximation with the expansion of the electronic wave
function in plane waves and the use of pseudopotentials. The calculated phonon dis-
persion is shown in Figure 4.18 compared with inelastic neutron measurements [56].
The overestimate of one of the acoustic mode in this calculation is obvious in both
�gures showing the dispersion and phonon DOS. By comparing the calculation with
both the neutron and INRS measurements, this calculation technique is validated
and improvement may be made.

2The �lms were made by Dr. Sunglae Cho at Department of Physics and Astronomy, North-
western University.
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4.5 A-15 Sn Compounds

Superconducting intermetallic A15 materials are interesting because of their rela-
tively high superconducting transition temperatures and critical �elds, also of the in-
terplay between their superconductivity, their structural phase transitions, and their
temperature-dependent anomalies in properties like phonon spectra, elastic constants,
and electric resistivities [58, 59]. Two A15 structure compounds Nb3Sn and V3Sn
were measured by INRS technique, with an energy resolution of 3.6meV . The energy
scan range is �80meV and step size is 1 meV . Measured spectra and normalized
phonon excitation probability density functions are shown in Figures 4.19 and 4.20.
Derived lattice dynamic properties are listed in Table 4.4 and phonon DOS are shown
in Fig. 4.21. The di�erent positions of the higher energy peaks in these two mate-
rials could be understood as the result of mass di�erence of the other atoms in the
lattice. Since we know that for a diatomic chain the optical mode frequency can be

approximated proportional to
q
(1=Ma + 1=Mb), with the atomic weights of 51 for V ,

93 for Nb, and 119 for Sn, we estimate that for optical modes !Nb3Sn=!V3Sn � 0:83,
which is very close to the observed 25meV=30meV = 0:83 (see Fig. 4.21). The other
obvious di�erence in the phonon DOS for these two materials is the di�erent peak
ratio between high and lower energy modes. For Nb3Sn, the partial phonon DOS is
compared with a calculation in Fig. 4.22. The calculation is based on lattice dynamics
model derived from inelastic neutron scattering experiments [60].

A M�ossbauer spectroscopy experiment was done on Nb3Sn [61]. One of the main
�ndings was an anomalously large temperature variation of resonant line shifts be-
tween 20 and 80 K, and was attributed to the isomer shift. The isomer shift is
proportional to the s-electron density, which was found to be increasing with temper-
ature in that range. Then this information was used to suggest that the high density
of electronic states near the Fermi level is due to holes rather than electrons. It was
argued that the second order Doppler shift in this temperature region has very weak
temperature dependence according to several models. However, it was an assumption
nonetheless. We can perform INRS experiments to �nd out the temperature depen-
dent behavior of the second order Doppler shift and reevaluate the M�ossbauer data.
The �nding itself will also be relevant to the dynamics of the system as a function of
temperature.

Another conclusion from that study is that the forces on the tin atoms in this sys-
tem are highly anharmonic. It was demonstrated by showing that the temperature-
dependent f -factor data violated a condition set by harmonic approximation. At
room temperature, the f -factor measured by M�ossbauer spectroscopy was 0.27, which
is low compare to our result of 0.46. It is well known that the absolute values of f -
factor are not reliable from absorption experiment, but the relative ratio can be quite
accurate. After readjusting the data according to the correction at room tempera-
ture, the temperature-dependent f -factor data basically agrees with harmonic model.
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Table 4.4: Recoilless factor f , mean kinetic energy per atom, mean force
constant, and the mean displacement of Sn in Nb3Sn and V3Sn, derived
from INRS measurements.

f T K u

(meV ) (N=m) (�A)

Nb3Sn 0.46(3) 12.6(7) 132(79) 0.13

V3Sn 0.40(2) 13.5(3) 167(24) 0.14

This should correct the original conclusion that the vibration of tin atoms is anhar-
monic over the entire temperature range. However, there is still a deviation from the
harmonic model at around 80 K. Thus a temperature-dependent INRS study will
reveal more information on this anomaly. The densities of states from such a study
will also help us understand the dynamics of the structural phase transition.
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4.6 Pd-Sn Alloy and INRS with Low Resonant Isotope Con-

centrations

At the very beginning of INRS 119Sn experiments with meV energy resolution, to
test the limit in count rate, we tried a sample of 12.5% Sn in Pd. There is no isotope
enrichment. So with the natural abundance, there is only 1 at.% nuclear resonant
isotope 119Sn in the sample. Using the density of Pd, we can estimate the isotope
density of 119Sn to be 6.8 �1020 per cubic centimeter. The spectrum is shown in
Fig. 4.23. We observed 0.25 counts per second at the phonon peak and 0.75 counts
per second at the elastic peak. Even though we performed the measurement for a
long time, with accumulated total counting time over ten hours, there are still less
than adequate numbers of counts. With this low number of total counts, the big
statistical uncertainties prevent any further data analysis. In this measurement, the
incident X-ray beam ux is about 9 �108 photons per second at 100 mA storage
ring current, in an energy bandwidth of 3.6 meV . The beam has a vertical size of
5 mm. The APD detector has an active area of 5�5 mm2. Under the same condition,
we observed about 50 counts per second for highly enriched tin metal sample. The
number density for tin metal is 3.7 �1022 per cubic centimeter. The numbers are
consistent for both samples.

With the improvement of detector and optics, it is quite feasible to measure the
same sample today. Counting rate can be improved by using detector with larger
active area, for example, we have 10�10 mm2 APD available now. Reducing the
vertical beam size will also help, as it will allow the incident beam on the sample
to be at a more shallower angle and allow the detector to be closer to the sample.
The crystal beam contractor described in Section 3.6 is designed for this purpose.
It can also be achieved with channel-cut crystals, however, a more elaborate design
is necessary to provide adequate eÆciency, as we are facing diÆculties at high X-
ray energy (Section 3.3). And �nally, a stronger source will ultimately make weak
scattering mechanisms and dilute samples more accessible.
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Chapter 5

Concluding Remarks

We have extended the inelastic nuclear resonant scattering technique to isotope 119Sn
by developing high resolution optics at its nuclear resonant energy. We have analyzed
this technique theoretically and experimentally, and showed that it is a unique tech-
nique to study lattice dynamics. It can provide useful information which cannot
be obtained by other techniques, and it works with a variety of types of samples.
It reveals dynamical information of a particular isotope in the sample and is capa-
ble to select vibrational modes with certain polarization. We have demonstrated its
capability to measure samples with very small amount of materials, thus makes it
possible to study thin �lms, multilayers, interfaces, impurities, dilute samples, and
samples under very high pressures. Since the �rst observation of phonon excitation
spectrum in 1994, there are more and more studies applying this method to various
problems, e.g., thin �lm and interfaces [62], amorphous materials [63], molecular mo-
tions [64], and biological systems [65], etc. In the following sections we will discuss a
few applications where INRS has clear advantages over other techniques.

5.1 Local Vibrational Dynamics

In Section 4.6 we showed an earlier attempt on a dilute sample of 12.5% Sn in Pd
without isotope enrichment. As mentioned later in that section, with the improve-
ment of detector and optics, it is quite feasible to measure the same sample today.
That is to say, INRS is capable of studying Sn samples with about 1 at.% of reso-
nant isotope concentration, or about 1020 per cm3. This can also be estimated by
Eq. (2.76) for the phonon part of the spectrum,

I(E) � � I0
n

nel

�0
�el

�

2

1� f

2�D
� (5.1)

As discussed at the end of Section 4.1, for 119Sn, the detection eÆciency � � 0:004.
Let's assume that f = 0:5, 2�D = 100meV , and �0=�el � 100, then for 119Sn, we
have,

I(E) � I0
n

nel
� 10�7 (5.2)

For 57Fe, the detector eÆciency is 0.94 for 6.4 keV X-rays and 0.23 for 14.4 keV
X-rays, assuming the detector has an active region of 100 �m thick. Both nuclear
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and atomic uorescences are detected. With internal conversion coeÆcient of 8.21
and K-uorescence yield of 0.347, we can estimate the channel weighted detector
eÆciency to be 0.3. Again assuming 1=3 of solid angle is covered by the detector,
we estimate � � 0:1 for 57Fe. Using the same numbers of �0=�el, f and 2�D as for
119Sn, we have,

I(E) � I0
n

nel
� 10�6 (5.3)

Comparing this with the estimate for 119Sn, we may conclude that for 57Fe samples,
an resonant isotope concentration of 0.1 at.% is possible to perform INRS experi-
ments. It is the detector eÆciency that makes the di�erence. In case of 119Sn, the
detection eÆciency can be improved if the detector is capable to detect the 3.5 keV
L-uorescence.

The element selectivity and the ability to measure low concentration samples
makes INRS an excellent tool to study local vibrational dynamics, for example, im-
purities, dopants, and interfaces. For example, in cases of substitutional impurities,
besides the mass defects, the changes in force constants in the vicinity of the defect
also plays an important role in determining the local impurity dynamics [66, 67, 68].
Analytical expressions were found for the impurity density of states which can be cal-
culated from the DOS for the host lattice and two parameters. One is the mass ratio,
the other is the ratio of the impurity-to-host force constant to the host-to-host force
constant. Local vibrational states were predicted arising from the change in force con-
stant. The systems of Sn in Pd [69] and Fe in Pd [70] were studied by M�ossbauer
spectroscopy. The Fe-Pd nearest-neighbor force constant was found smaller than
that of Pd-Pd. However the Sn-Pd nearest-neighbor force constant was found to be
larger, and there ought to be a localized state associated to Sn. In these studies, the
mean kinetic energy and mean displacement for impurity atoms were calculated from
the impurity (partial) phonon DOS of Sn, which was derived from Pd phonon DOS
measured in neutron experiment by Mannheim's formula [68]. Then they were used
to �t the measured resonant line shifts and f -factors at various temperatures. The
INRS experiments will yield directly the impurity density of states, thus provides a
direct test of Mannheim's theory.

5.2 Thin Films and Interfaces

X-rays have the advantage over neutrons in that only small amount of material is
required in X-ray scattering experiments. This in general and the element selectivity
in particular makes INRS a unique technique to study interfaces. For example, a
single atomic layer of 57Fe is put between layers of 56Fe and Cr. The result partial
phonon DOS is di�erent than those of inside the 56Fe or Cr layer [71]. to study
the interface dynamics of epitaxially grown Sn on CdTe or InSb substrates, we can
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�rst put a single layer or several layer of 119Sn on the substrate, then start growing
the other stable isotope of Sn, e.g., 118Sn or 120Sn. Both �-phase and �-phase of
Sn can be grown and the dynamical features of these two di�erent interfaces can be
investigated by INRS.

INRS has another feature that can be used to study two dimensional systems.
The cross section generally depends on the incident beam direction relative to crystal
orientation, as it is shown in Eq. (2.35) and that dependence is carried over to the
projected phonon DOS (Eqs. 2.47 and 2.48). In thin �lm experiments, to maximize
count rate in the inelastic channel, the incident X-ray beam is always at a grazing
angle slightly above the total reection angle. In such scattering geometry, the term
(k̂ � ~�s)2 in the above mentioned equations suggests that only the in-plane vibration
modes are measured. This feature can be utilized to investigate interface dynamics
in samples grown in di�erent orientations.

5.3 High Pressures

High pressure studies are increasingly active. The Diamond Anvil Cells (DACs) can
now put samples at over 1 MBar pressure. This opens up another dimension in
the phase space of materials. Understanding dynamics under high pressures has
profound implications in geophysics and planetary astronomy. We have performed
high pressure INRS experiments and obtained Sn-partial phonon DOS for SnO under
modest high pressures. This information cannot be obtained with other experimental
techniques and is important to understand its thermodynamics under high pressure.

It is possible to perform such measurements for 119Sn samples, and we did it,
with current setup described in Chapter 3 and Section 4.2. However, as mentioned
in Section 4.2, the setup is not eÆcient to deel with the small size of DAC sample
chamber. Even smaller chamber is needed to get into higher pressure range. The
future high pressure INRS experiments will require focused beam. A K-B mirror was
used in a 57Fe high pressure INRS experiment where the DAC sample chamber is
about 20 �m across and the highest pressure obtained was 150 GPa [72]. K-B mirrors
can focus X-ray beam down to micron or less. But their spatial acceptance is still
smaller than the typical beam size. To accommodate focusing mirror, we need in-line
high resolution monochromator to keep the monochromatized beam in the horizontal
plane and retain the small beam size.
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