# THE APS UPGRADE ACCELERATOR

**Glenn Decker** *MBA Accelerator Associate Project Manager, Argonne Distinguished Fellow* 



 Argonne National Laboratory is a
 U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.



# THE APS-U ACCELERATOR LATTICE

### Number of sectors: 40

40-fold symmetric multi-bend achromat based on ESRF design, including 6 reverse bends per sector in addition to 7 forward bends.

The design is the brainchild of Michael Borland.



- Beam Energy: 6 GeV
- Beam Current: > 200 mA
- Maximum single bunch current:
   > 4.2 mA
- Circumference: 1103.608 meters
- Minimum bunch spacing: 11.36 ns
- Available fill patterns: 48 to 324

- Available fill patterns: 48 to 324 uniformly-spaced bunches, with ion clearing gaps
- Tunnel temperature stable within +/- 0.1 degrees C
- Horizontal on-axis swap-out injection





### **HIGH-LEVEL LATTICE PARAMETERS\***

| Quantity                    | A | PS Before | APS MBA<br>Timing Mode | Units                | _ |
|-----------------------------|---|-----------|------------------------|----------------------|---|
| Beam Energy                 |   | 7         | 6                      | $\operatorname{GeV}$ |   |
| Beam Current                |   | 100       | 200                    | mA                   |   |
| Number of Bunches           |   | 24        | 48                     |                      |   |
| Bunch Duration (rms)        |   | 34        | 104                    | $\mathbf{ps}$        |   |
| Energy Spread (rms)         |   | 0.095     | 0.156                  | %                    |   |
| Bunch Spacing               |   | 153       | 77                     | ns                   |   |
| Emittance Ratio             |   | 0.013     | 1                      |                      |   |
| Horizontal Emittance        |   | 3100      | 31.9                   | pm-rad               |   |
| Horizontal Beam Size (rms)  |   | 275       | 12.6                   | $\mu { m m}$         |   |
| Horizontal Divergence (rms) |   | 11        | 2.5                    | $\mu$ rad            |   |
| Vertical Emittance          |   | 40        | 31.7                   | pm-rad               |   |
| Vertical Beam Size (rms)    |   | 10        | 7.7                    | $\mu { m m}$         |   |
| Vertical Divergence (rms)   |   | 3.5       | 4.1                    | $\mu rad$            |   |



\*Parameters c. 2017

Emittance is related to the product of beam size and angular divergence (phase space area)

#### **Previous APS**

**APS MBA** 



# **KEY PERFORMANCE PARAMETERS**

| Key Performance Parameters | Thresholds<br>(Performance Deliverable)                                                   | Objectives                        |  |
|----------------------------|-------------------------------------------------------------------------------------------|-----------------------------------|--|
| Storage Ring Energy        | > 5.7 GeV, with systems installed<br>for 6 GeV operation                                  | 6 GeV                             |  |
| Beam Current               | $\geq$ 25 mA in swap-out injection mode<br>with systems installed for 200 mA<br>operation | 200 mA in swap-out injection mode |  |
| Horizontal Emittance       | < 130 pm-rad at 25 mA                                                                     | $\leq$ 42 pm-rad at 200 mA        |  |
| Brightness @ 20 keV1       | $> 1 \ge 10^{20}$                                                                         | $> 1 \ge 10^{22}$                 |  |
| Brightness @ 60 keV1       | $> 1 \ge 10^{19}$                                                                         | $> 1 \ge 10^{21}$                 |  |

<sup>1</sup>photons/sec/mm<sup>2</sup>/mrad<sup>2</sup>/0.1%BW





### **ACTUAL HARDWARE**



### September 2004

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. (7



### **HISTORICAL FOOTNOTE**



### CESR

- 5 GeV (APS-U is 6 GeV)
- 768-meter circumference (APS is 1104 meters)
- Used for B meson research (Now used for synchrotron radiation studies – CHESS and accelerator training)
- Correct color scheme

### **Cornell Electron Storage Ring c. 1980**

CONCEPTION AT A CONTRACT OF A CONTRACT OF U.S. DEPARTMENT OF U.S. DEpartment of Energy laboratory managed by UChicago Argonne, LLC.



## **PERFORMANCE – SURVEY**



#### **Radial Deviation from Design**



- Achieved < 30 microns rms globally;</li>
- Circumference within 600 microns vs. 30 mm required





# **INJECTION STRAIGHT SECTION, SECTOR 39**

Very fast, very strong magnets, very small apertures



#### **Injection Septum Magnet** 18 kA, 0.5 millisecond pulse width

**Injection Stripline Kickers** 27 kV, 20 nanosecond pulse width

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.



# **INJECTION SEPTUM AND FIRST KICKER**

### **Cross Section, Top View**





# INJECTION SEPTUM AND FIRST KICKER

**Cross Section, Top View** 







### **INJECTION SEPTUM**



#### Septum #1





### **INJECTION SEPTUM**



#### Septum #1







U.S. DEPARTMENT OF U.S. Department of Energy laboratory U.S. Department of Energy lab

### **INJECTION SEPTUM FAILURE**



Kapton Tape

#### Septum #1 Rupture Site





### **INJECTION SEPTUM TEAM**







# **MILESTONES**

| MILESTONE                                     | SCHEDULE<br>DATE | FORECAST/<br>ACTUAL DATE | COMPLETE |
|-----------------------------------------------|------------------|--------------------------|----------|
| Install Septum Magnet                         | 01-Dec-23        | 19-Dec-2023 (A)          | <b>S</b> |
| Start RF Conditioning                         | 03-Jan-24        | 26-Feb-2024 (A)          | <b>Ø</b> |
| 200th Magnet Module/Bridge Assembly Installed | 22-Dec-23        | 14-Dec-2023 (A)          | <b>S</b> |
| Storage Ring Testing w/o beam completed       | 24-Jan-24        | 10-Apr-2024 (A)          | <b>Ø</b> |
| ID assembly and acceptance testing complete   | 30-Apr-24        | 30-Jun-24                |          |
| Achieve 25mA in the Storage Ring              | 15-Apr-24        | 19-May-2024 (A)          | <b>Ø</b> |
| Storage Ring Threshold KPPs Achieved          | 01-May-24        | 01-Jun-24                |          |

