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ABSTRACT

In these notes the limitations of neutron diffraction for determining the true
magnetic structure of some compounds are discussed. The analytical expres-
sions linking the measurable quantities to the model of a magnetic structure
do not contain a crucial parameter: the phase factor between two Fourier co-
efficients not related by symmetry. The impossibility to obtain this parame-
ter by conventional methods precludes the access to the true spin arrangement
in the solid. The problem is first formulated analytically and illustrated by
some simple examples, secondly we shall present some real examples concerning
incommensurate-to-commensurate magnetic phase transitions and, finally, some
conclusions are stated

1. Introduction

It is frequent the discovery of magnetic compounds that exhibit more than one prop-
agation vector. The typical case is the so called multi-k structures, observed in some
intermetallic compounds of high crystallographic symmetry !. Multi-k structures refers
to a magnetic structure in which more than one arm of the star of k participates into
the actual spin arrangement ¥ That is, the transition chanel, in terms of the Izyumov’s
school %, has more than one propagation vector. Symmetry relations between the Fourier
coefficients of the magnetic structure, when all the propagation vectors belong to a single
star, can be obtained by group theory using the geometrical method of Bertaut ® or the
algebraic straightforward expressions that have been given by Izyumov and collaborators
%, The practical determination of the transition chanel could be difficult because the mag-
netic phase transition, and the concommitant domain formation, produces satellites (in a
single crystal diffraction pattern) which are not distinguishable (in usual conditions) from
those of a true multi-k structure. External fields have to be applied to decide what is the
actual situation. More unusual is the case showing two propagation vectors not belonging
to the same star. However, a well known case is particularly common: the conical struc-
tures. Nagamiya * has given the conditions for two independent propagation vectors to
describe constant moment (CM) magnetic structures. Nagamiya treated combinations of
propagation vectors of the form k; = 1/2H (or k; = 1/4H | k; = 3q) and ky = q at the
interior of the Brillouin Zone (ks € IBZ), so that the relative orientation of the Fourier
coefficients is fixed and the relative phase is irrelevant. In this paper we shall formulate
the problem in its full generality in relation with the practical structure determination.
For that a summary of the most important scattering formulas is first given.

2. Neutron Scattering Cross Sections and Magnetic Structure Factor

For polarized neutrons the total scattered intensity and the final polarisation of scat-
tered neutrons for the scattering vector h is given by the Blume’s equations ®. The
scattered intensity is:

Iy = NoNj + Np{P - M7} + Np{P -Myp} + Moy - M7y 4P - {My, x M7} (1)

*In this paper we use the terms spin and magnetic moment indistinctly. The term spin arrangement is
also used as synonymous of magnetic structure



The equation defining the scattered polarisation is:

P.,l, = PN,N, + N\M7, + NgMy, + P x {MJ_hNh Mj_hNh} + MJ_h{P M* h}
+ M {P My} —P{My, M} +i{Mip x M1, } (2)

Where P and P; are the incident and scattered neutron polarisation, Ny, is the nuclear
structure factor and My, is the magnetic interaction vector defined as:

M.y, = e x (M(h) x e) = M(h) — (e - M(h))e (3)

M(h) is the magnetic structure factor, and e is the unit vector along the scattering
vector h. The scattering vector is h=H+k where H is a reciprocal lattice vector of the
crystal structure and k the propagation vector corresponding to the current magnetic
reflection. For a pure magnetic reflection N =0

The magnetic structures that we are considering have a distribution of magnetic mo-
ments that can be expanded as a Fourier series:

mg; = Z Sk]‘ eXp{—QWile} (4)
ky

The sum is extended to all propagation vectors that could belong to different stars.
The Fourier coeflicients Sy; are, in general, complex vectors. The magnetic structure
factor can be written as:

M(H + k) = p 3" f(H 4 K)Sy; expl2ri(H + K)r;) (5)

i=1

The sum is over all the magnetic atoms in the crystallographic cell. The constant
p(= rey/2) is 0.2695 and allows the conversion of the Fourier components of magnetic
moments, given in Bohr magnetons (up) to scattering lengths units of 10~ 2cm. f;(H+k)
is the magnetic form factor and r; is the vector position of atom j. In the above expression
the atoms have been considered at rest. If thermal motion is considered and if symmetry
relations are established for coupling the different Fourier components, we obtain the
general expression of the magnetic structure factor:

= pZO fi(h)T;(iso) ZMysSkyTyseXP{Qm[(H +I){S [ thr; — vwjsl} (6)

7=1

The sum over j concerns the atoms of the magnetic asymmetric unit for the wavevector
k (the Fourier component with index k contributes only to the k-satellite). So that j labels
different sites. The anisotropic temperature factor, T},, is not generally necessary to be
used in magnetic refinements(7;; = 1). The sum over s concerns the different symmetry
operators of the crystal space group that belong to the wave vector group. The matrix
M;, transform the components of the Fourier term Sg; = Si;1 of the starting atom 51 to
that numbered as js in the orbit of j. The phase factor vy ;s has two components:

Vkjs = Pij + Pkjs (7)
®y; is a phase factor which is not determined by symmetry. It is a refinable parameter
and it is significant only for an independent set of magnetic atoms (one orbit) which

respect to another one. ¢gj, is a phase factor determined by symmetry. The Fourier
component k of the magnetic moment of atom j1, Sy;, is transformed to

Skjs = M;sSk; exp{—2midy;s } (8)



The matrices M, and phases ¢y s can be deduced from the atomic basis functions,
obtained by applying projection operator formulas, corresponding to the active represen-
tation(s) participating in the definition of the actual magnetic structure. The sign of ¢y
changes for -

In the general case Sk, 1s a complex vector with six components. These six components
per magnetic orbit constitute the parameters that have to be refined from the diffraction
data. Symmetry reduces the number of free parameters per orbit to be refined. An alter-
native expression of the magnetic structure factor can be written as a function of mizing
coefficients (parameters to be refined) and the atomic components of the basis functions
of the relevant representation(s) 2. In the case of a commensurate magnetic structure one
can calculate the magnetic structure factor in the magnetic unit cell. In such a case Sg;
are real vectors corresponding to the magnetic moment of the atom j, the matrices M
are real and all phases verify ¢x;; = 0. The crystallographic magnetic groups theory can

be fully applied in such a case ©.

If the magnetic structure represents an helical order the Fourier coefficients are of the
form: |

Sk; = = [maju; + imy, v exp{ —27idy; } 9)
2

where u; and v; are orthogonal unit vectors. If my; = mgy; = mg the magnetic structure
for the sublattice j corresponds to a classical helix (or spiral) of cylindrical envelope. All
J atoms have a magnetic moment equal to mg. If my; # my; the helix has an elliptical
envelope and the moments have values between min(my;, my;) and max(mq;, mo;). If
mz; = 0 the magnetic structure corresponds to a modulated sinusoid of amplitude my;.

3. The phase between independent k-vectors

When more than two independent propagation vectors appears in the diffraction pat-
tern, the analysis of the data is unable to give a unique answer to the problem of the
magnetlc structure. In general is not possible to discriminate between the presence of
two magnetic phases co-existing in the crystal and a coherent superposition of these two
magnetic structures. We shall be concerned only with the latter picture. Even from this
hypothesis it is not possible to get uniqueness. This can be seen adding a phase factor,
depending only on k, to the Fourier series equation (4):

= Z Sx; exp{—27i(kR; + W)} (10)
{k}
The magnetic structure factor [equation (5)] transforms to:
M(H + k) = pexp{27iWx} > f;(H + k)Sk; exp{2ri(H + k)r;} (11)
7=1

The phase Wy appears in the expresion of the magnetic structure factor as a multi-
plicative phase factor that does not change the intensity of equation (1) or the scattered
polarisation of (2) for a pure magnetic reflection. The phases Wy are not accesible experi-
mentally, so the real magnetic structure cannot be obtained from diffraction measurements
alone.

The most simple case in which the phase plays an important role is the sinusoidally
modulated structure in a simple Bravais lattice (a single magnetic atom per primitive
cell) when the propagation vector takes special values. The Fourier coefficient and the
corresponding magnetic moment at cell [ are:

1
Sk = §mou exp{—Zﬂ'i\I/k} m; = m,u cos 277(le + \I’k)



The phase Wy plays no role when k € I BZ and has no rational components. A change in
the phase has the same effect as a change of the origin in the whole crystal. All magnetic
moments between —m,u and m,u are realized somewhere in the lattice. However, if
k = 1/4H and ¥y = 1/8 the magnetic structure is a CM-structure with the sequence
{+ + — — 4+ + — — ...}. This structure is indistinguishable of the sinusoidally modulated
structure obtained with an arbitrary value of Wy. If all the components of k are rational
the selection of the phase can have important consequences for the spin arrangement. This
is the simplest case in which the physical picture depends on the election of a parameter
(W) that is not accessible by diffraction methods. Physical considerations lead us to prefer
one model among several other. For instance, CM-structures are normally expected at
vey low temperatures when magnetic atoms have an intrinsic magnetic moment. This
condition reduces the number of ways to combine non symmetry-related propagation
vectors to several specific cases that have been discussed by Nagamiya *. Let us discuss
some unusual simple cases that will be illustrated with real examples.

4. Fluctuating magnetic structures

The magnetic structures with more than one pair (k,-k) of propagation vectors not
satisfying the Nagamiya’s conditions are, as is the sinusoidally modulated magnetic struc-
ture, general non-constant moment structures. We shall call these spin configurations:

Auctuating structures |
Fluctuating Structures with irrelevant phase-factors

This case corresponds to the combination of k = 1/2H and q € I BZ vectors. To
simplify the notation we shall treat only one of the atoms of a particular Wyckoft site
and we drop the reference index. The propagation vector q describes a helical configura-
tion, and k corresponds to a uniaxial antiferromagnetic configuration, so that the Fourier
coefficients of the atom are:

1
Sq = §m1[u + iv]exp{—2mi¥,} Sk = man

where, as above, u and v are orthogonal unit vectors defining the plane of the spiral of
axis W = u x v, and n is a unit vector defining the axis of the spin configuration related
to propagation vector k = 1/2H. The director cosines of n with respect to the axes
(u,v,w) are (ny,nz,ns). The magnetic moment distribution of a coherent superposition
of the two types of Fourier coefficients is given by the following formula (notice that

(I)l = 27‘(’(qu + \I/q) and lh = HRl)i

m; = mycos2n(qR; + Wq)u + my sin 27 (qR; + ¥y )v + maexp{—miHR, }n
= mq cos ®;u + mqsin ¢;v + mz(—l)lhn
= (mqcos®; + (—l)lhmgnl)u + (mq sin ®; + (—l)lhmgnz)v + (—1)lhm2n3W(12)
The modulus of the magnetic moment can be calculated by taking the square of
equation (12):
mi = mi+mi+ Zmlmg(—l)lh(nl cos ®; 4 ny sin ;)
= m] —I—mg—l—Zmlmz(—l)lh Cos q (13)

If n is parallel to w the moment is constant and we obtain an antiferromagnetic con-
ical structure (if H= 0, we obtain the classical ferromagnetic conical structure). For the

TThe term fluctuating has no dynamic content in the present context



general orientation of n (non vanishing components in the u-v plane) the modulus of
this distribution is not constant. The amplitude varies between the two extreme values

\/m% + m3 + 2mymy sin f and \/m% + m32 — 2mymysin 6, being # the angle of n with w.
A real system in which this behaviour seems to take place is the compound CsMnF, ”
Another interesting system is ThMngGeg ® ¥ The second wave vector, in this case, is k = 0
and the associated magnetic moment lies within the u-v plane defining the spiral plane
of the first propagation vector. This gives rise to a distorted spiral structure.

In all these cases, the selection of the phase factor Wy is completely irrelevant. That is,
the physical picture obtained after using the equation (10) is not changed by varying the
phase factor.

Fluctuating Structures Approaching CM-structures

We shall now consider the case of two pairs of propagation vectors (k,-k) and (q,-q)
veritying k, q € I BZ. Such a magnetic structure has as Fourier coefficients:

1 . 1 . .
Sk = §(Rk + iIg) Sq = §(Rq + i1y) exp{—1 U}
Using the notation ®y; = 2rkR; the magnetic moment distribution is given by:

m; = Rk COS (I)kl + Ik sin (I)kl + Rq COS((I)ql + \I}) + Iq sin(q)ql + \I/) (14)

This moment distribution is generally a non-CM structure and the change of the phase
factor W can modify the physical picture if both vectors k and q have rational components.
This last case is interesting when the components are simple integer fractions because one
can treat the problem using the magnetic cell and search for a magnetic space group that
fix automatically the phase. The finding of such a commensurate magnetic structure does
not eliminate the problem of uniqueness of the magnetic moment distribution compatible
with the experimental results. However, the possibility to have a simple spin arrangement
with magnetic moments of atoms approachmg the expected intrinsic moment is more sat-
isfying form the physical point of view.

If a CM-structure can be found refining the magnetic structure using the magnetic
cell, a particular set of equations (14) can be established for atoms inside the magnetic
cell and the phase factor W can be obtained solving these equations. Of course, to get a
set of compatible equations the vectors R and I cannot be arbitrary. An example can be
readily shown if we consider only real Fourier coefficients in equation (14). We can write
for the a-component:

Ry cos(Pyy + V) =m) — Ry cos Py = V¥ =cos

The above equations must be verified for the set of points [ inside the magnetic cell
and for all components simultaneously. This indicates that only very special relation-
ships between Fourier coefficients must be verified to have a single ¥ to connect the two
descriptions.

An interesting example is the magnetic ordering of ThGes ”. This compound crys-

tallizes in the space group C'mem, (a = 4.07,b = 20.8,¢ = 3.92 A), with Th-atoms in
positions (4¢) +(0,y,1/4). Below the Néel temperature (T = 40K) the magnetic order

is characterized by two independent propagations vectors k = (k;,0,0) and q = (¢4, 0, ¢.)
with £, ~ ¢, =~ % and ¢, = % Below T;,. = 24K the propagation vectors lock-in

to commensurate values. Both vectors verify k,q € IBZ with a two-arm star for k

9

iSee also the article: Magnetic Spiral Structures in the Hexagonal RMngGes Compounds, by P.
Schobinger-Papamantellos, J. Rodriguez-Carvajal, G. André and K.H.J. Buschow, in these proceedings



(Gx = C2¢m) and a four-arm star for q (G4 = Cc¢). The refinement of the magnetic
structure at low temperature in the magnetic unit cell using powder diffraction data
provides a quasi-collinear structure with two types of Th-atoms having similar moments
(m(Thy) =9.2up,m(Tby) = 88up). The refinement using real Fourier coefficients for all
propagation vectors (including the second pair of the star of q) gave similar agreement. A

systematic search of the phase factors using a computer program ° allows the finding of
a consistent set of phases that produces fluctuations of m(7'b) between 9.4pp and 7.0p5.
The spin arrangement is similar to that observed in the magnetic cell refinement. For the
incommensurate phase we suppose that the spin arrangement does not change dramati-
cally, so that the phases found for the lock-in phase are still valid.

Symmetry analysis can be applied to each wave vector separately. There is no interfer-
ence terms between reflections belonging to different sets of satellites, so that we can
proceed as if two magnetic different phases co-exist and only at the end of the analysis
we can think in the coherent superposition of both phases. The computer program '° we
have written can be used as a general tool for searching phase factors between Fourier
coefficients belonging to non-symmetry related wave vectors giving the lowest fluctuation
between M., and Mqz.

5. Conclusions

The physical origin of the stabilization of two propagation vectors belonging to differ-
ent stars is not yet clear in the absence of external fields. In Bravais lattices we have to
think in the action of higher order terms (biquadratic) in the spin hamiltonian to stabilize
two propagation vectors. In complex crystal structures the nature of the ground state is
not known in the general case and, probably, it is not necessary to invoke higher order
terms to stabilize two non-related propagation vectors. Only the case of conical structures
(k =0 and q € IBZ) has been studied with some detail '* for the spinel lattice. We can
conclude that only a physical model based in the microscopic spin-spin interactions is able
to fix completely the phases appearing in the Fourier expansion of the magnetic moment
distribution in the solid. Experimentally, other techniques (like Mossbauer spectroscopy,
neutron or X-ray topography, p-SR, etc...) may help, in some cases, to distinguish between
several models. Unfortunately there is no general method to overcome this phase problem.
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