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In this paper the techniques for magnetic structure determination from neutron powder diffraction 
(NPD) data as implemented in the program FullProf are reviewed. In the general case the magnetic 
moment of an atom in the crystal is given as a Fourier series. The Fourier coefficients are complex 
vectors constituting the “unknowns” to be determined. These vectors define the magnetic structure 
and they correspond to the “atom positions” of an unknown crystal structure. The use of group 
theoretical methods for the symmetry analysis is needed to find the smallest set of free parameters. In 
general the Fourier coefficients are linear combinations of the basis functions of the irreducible 
representations of the wave vector group. The coefficients of the linear combinations can be 
determined by the simulated annealing (SA) technique comparing the calculated versus the observed 
magnetic intensities. The SA method has been improved and extended to the case of incommensurate 
magnetic structures within FullProf. 

1 Introduction 

In the last years the Rietveld Method (RM) has allowed great progress in the analysis 
of powder diffraction data. The RM is not designed for structure determination, it is just a 
least squares optimisation of an initial model of the crystal and magnetic structure 
supposed to describe approximately the experimental powder diffraction pattern. It is 
important to start with a “good” initial model in order to succeed the refinement 
procedure. In this paper we shall be concerned with the problem of getting the initial 
model of a magnetic structure in order to refine it from powder diffraction data. We shall 
describe the basis of the technique and the way the magnetic structure determination is 
implemented in the program FullProf. 

2 The formalism of propagation vectors for describing magnetic structures. 

The reader interested in the basis of the elastic magnetic scattering in relation with 
magnetic structures may consult the references [1, 2]. Here we will follow the reference 
[3] but using a different convention for the sign of phases and a somewhat different 
notation. The intensity of a Bragg reflection (we neglect here the geometrical factors) for 
non polarised neutrons is given by: 
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where Nh is the nuclear structure factor and the magnetic interaction vector M⊥h is 
defined as: 

( )( ) ( ) ( )( )hMeehMehMeM h ⋅−=××=⊥  (2) 
M(h) is the magnetic structure factor, and e is the unit vector along the scattering vector 
h=H+k, where H is a reciprocal lattice vector of the crystal structure and k the 
propagation vector corresponding to the current magnetic reflection. The magnetic 
structures that we are considering have a distribution of magnetic moments that can be 
expanded as a Fourier series: 
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The sum is extended to all propagation vectors that could belong to different stars. 
The Fourier coefficients Skj are, in general, complex vectors. The magnetic structure 
factor corresponding to such a magnetic structure can be written as: 
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The sum over j concerns the atoms of the magnetic asymmetric unit for the wave 
vector k. We are concerned only with magnetic atoms within the crystallographic unit 
cell, so that j label different sites: fj(h) is the magnetic form factor and rj is the vector 
position of atom j. The constant p = re γ/2 = 0.2695 allows the conversion of the Fourier 
components of magnetic moments, given in Bohr magnetons to scattering lengths units of 
10-12 cm. The sum over s concerns the different symmetry operators of the crystal space 
group that belong to the wave vector group Gk (subgroup of the crystallographic space 
group formed by the operators leaving invariant the propagation vector). The matrix Mjs 
transform the components of the Fourier term Skj of the starting atom j to that numbered 
as js in the orbit of j. The phase factor ψkjs has two components:  
   jsjjs kkk φψ +Φ=   (5) 

Φ kj is a phase factor that is not determined by symmetry. It is a free parameter and it 
is significant only for an independent set of magnetic atoms (one orbit) which respect to 
another one. φkjs is a phase factor determined by symmetry. The Fourier component Skj of 
the representative starting atom j is transformed to 

{ }jsjjsjs iexpM kkk SS φπ2−=  (6) 

The matrices Mjs and phases φkjs can be deduced from the atomic basis functions, 
obtained by applying projection operator formulas, corresponding to the active 
representation(s) participating in the definition of the actual magnetic structure. The sign 
of φkjs changes for -k. In the general case Skj is a complex vector with six components. 
These six components per magnetic orbit constitute the parameters that have to be refined 
from the diffraction data. Symmetry reduces the number of free parameters to be refined. 
In some cases, transformations like expression (6) cannot be obtained from the basis 
functions of the irreducible representations of the propagation vector group; for those 
cases an alternative expression of the magnetic structure factor can be written as a 
function of "mixing coefficients" (parameters to be refined) and the atomic components of 
the basis functions of the relevant representation [4]. The expression of the Fourier 
coefficients in terms of the atomic components of the basis functions is given as: 
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The formula of the magnetic structure factor is then transformed to: 
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In the above expressions, ν labels the active irreducible representation, Γν, of the of 
the propagation vector group Gk, λ labels the component corresponding to the dimension 
of the representation Γν, m is an index running between one and the number of times the 
representation Γν is contained in the global magnetic representation ΓM. Finally  ( )jsn

ν
λ

kS



 

are constant vectors obtained by the application of the projection operator formula to unit 
vectors along the directions of the unit cell basis. An addition sum over ν is sometimes 
necessary when more than one irreducible representation is involved in the magnetic 
phase transition. See reference [4] for details. 

If the magnetic structure has several propagation vectors k, it is not possible in 
general to determine unambiguously the spin configuration, because the phase between 
the different Fourier components cannot be determined. Fortunately, nature often selects 
simple solutions and many magnetic structures have a single propagation vector, or 
display some symmetry constraints that reduce the complexity of the periodic magnetic 
structure given by Eq.3. Solving a magnetic structure consist of finding a set of 
propagation vectors indexing the whole set of magnetic reflections and a set of “mixing 
coefficients” (or, equivalently, the components of the Fourier coefficients and phases) 
providing a good agreement between the intensities of the observed and calculated (using 
the above expressions) magnetic reflections. In some cases the search for a good starting 
model may be formulated in terms of other set of parameters. For instance, in cases of 
conical/helical structures involving magnetic atoms with a common cone-axis, the 
magnetic structure factor can be written in terms of the module of the magnetic moments, 
the angle between the moments and the cone-axis, and phases between the different 
atoms. This description in real space gives a more intuitive picture of the magnetic 
structure. 

3 The search for the propagation vector and symmetry analysis. 

The first problem to be solved before attempting the resolution of the magnetic structure 
is the determination of the propagation vector(s), i.e. its “periodicity”. To find k is 
necessary to index the magnetic reflections appearing below the ordering temperature. 
With a single crystal the task is somewhat easy, but is tedious for a powder because only 
the module of reciprocal vectors is available. We have developed a method for searching 
the propagation vector of a commensurate or incommensurate structure implemented in 
the program SuperCell [5]. Once an approximate propagation vector is obtained the 
symmetry analysis according to references [4] can be started. The program BasIreps may 
be used for obtaining the vectors ( )jsn

ν
λ

kS  in Eq.7 for each crystallographic site occupied 
by magnetic atoms.  

To solve the magnetic structure, the integrated intensities of the magnetic reflections 
may be obtained using the method of “profile matching”, simultaneously with the 
Rietveld method, implemented in the program FullProf [3, 5]. This mixed procedure has 
to be used with caution: no structural parameter of the known phase must be refined. This 
is the usual case of neutron diffraction patterns of magnetically ordered compounds, 
where the nuclear reflections coexist with the magnetic reflections. For illustration 
purposes we show in Fig.1 the plot of the observed versus calculated pattern of a portion 
of the simulated diffraction pattern of DyMn6Ge6 at low temperature after performing the 
extraction procedure. The magnetic structure has two propagation vectors k1=(0,0,0) and 
k2=(0,0,δ), with δ ≈0.165 with respect to the reciprocal lattice of the crystallographic unit 
cell. All satellite reflections are indexed with h=H±k2. There are also contributions to the 
same positions of the nuclear reflections, h=H (k1=0), accounting for a ferromagnetic 
component. The spin arrangement corresponds to a double cone magnetic structure. 
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Figure 1. Profile matching refinement of the DyMn6Ge6 neutron diffraction pattern at low temperature. The 
profile of the calculated nuclear contribution (upper reflection marks) is also displayed as a thick continuous 
line. The second set of reflection markers corresponds to the magnetic peaks. Markers at the same positions as 
the nuclear (first set) reflections correspond to k1=(0,0,0), the extra markers are the position of the satellites 
corresponding to k2=(0,0,δ). 

4 The resolution of magnetic structures from powder data: the simulated 
annealing method 

We shall describe the Simulated Annealing (SA) technique to solve the magnetic structure 
using clusters of overlapped reflections as single observations. The merging of clusters is 
automatically performed using the option “profile matching” of the program FullProf [5]. 
The SA method described below is also valid for the analysis of single crystal data where, 
except for domains, there is no reflection overlap. 

The SA algorithm is a general-purpose optimisation technique for large combinatorial 
problems introduced in 1983 by Kirpatrick, Gelatt and Vecchi [6]. The function, E(ω) to 
be optimised with respect to the configuration described by the vector state ω is called the 
“cost” function. In the context of magnetic structures the configuration ω is the list of all 
the components of the Fourier coefficients of magnetic atoms existing in the chemical unit 
cell and this list is obtained from the independent parameters ß that are those really 
participating in the annealing procedure. The most general case of parameters constituting 
the vector ß corresponds to the set of mixing coefficients of the linear combination given 
by Eq.8, but, as stated above, another set of parameters in real space (moment amplitudes, 
angles, …) may also be used. First we select an initial configuration, ωold, then each step 
of SA method consists of a slight change of the old configuration to a new one, ωnew. If 
∆=E(ωnew)-E(ωold) ≤ 0 the new configuration serves as old configuration for the next step. 
If ∆ is positive, ωnew is accepted as current configuration only with certain probability that 
depends on the so-called “temperature”, T, parameter and ∆. The probability, given by the 
Boltzman factor exp(-∆/Τ), that a worse configuration is accepted is slowly decreased on 
“cooling”. 



 

For magnetic structure determination, the cost function can be chosen as the 
conventional crystallographic R-factor, or some function related to it. In the new version 
of FullProf [5] the following expression is used: 

  E[ω(ß)]= R[ω(ß)] = c Σk|Iobs(k)- SΣj(k)Icalc(j)[ω(ß)]| 
The sum over k is extended for all the “observations” (clusters of overlapped reflections), 
and that over j(k) for all the reflections contributing to the observation k. The constant 
factor c is given by: 1/c=IT =ΣkIobs(k). S is a scale factor.  
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Figure 2. Evolution of the cost function for accepted configuration in
the resolution of the magnetic structure of DyMn6Ge6 by simulated 
annealing as a function of the sequential order of temperatures. For a
single temperature on can see the dispersion of the R-factor, 
corresponding to the different configurations, that is reducing as
temperature decreases. 

To start solving a 
magnetic structure with the 
SA method one has to 
create the intensity file 
where the indices of each 
reflection and its intensity 
are written. This is 
performed automatically 
within FullProf by using 
profile matching modes 
and the option that outputs 
the overlapped reflection 
clusters in a file that can be 
used as input for the SA 
method. The usual PCR 
file [5] of FullProf is then 
used for controlling the 
algorithm. A pseudo-code 
describing the SA 
procedure was given in 
reference [3]. The SA 

parameters are those defining the limits of loops in the algorithm described in [3]: T_ini = 
initial temperature, N = maximum number of temperatures, NcyclM = number of 
Montecarlo cycles per temperature, Accept=Minimum percentage of accepted 
configurations; and the “cooling” schedule T(t+1)=qT(t) (q<1, q ≈ 0.9). The user may 
select either a fixed step for each variable (that are defined within a simulation box of 
hard or periodic limits) or a variable step (Corana’s algorithm) that is dynamically 
adapted in order to have an adequate rate of accepted configurations for each temperature 
[7]. 

The starting point may be an arbitrary configuration or a given one. At variance with 
least-squares optimisation methods, the SA algorithm never diverges. Always the 
algorithm proceeds roughly in two steps. The first step, at high temperatures, the 
algorithm is searching for the “basin of attraction” of the minimum in the configuration 
space, this part constitutes the “magnetic structure determination”. Once the region is 
attained, a more or less sharp drop in the average “energy” (R-factor) occurs. Then, the 
second step starts when the average R-factor is low enough, the algorithm enters in its 
phase of “refinement”, where the good configuration has already been found, and 
performs a progressive improvement of the solution. This is clearly seen in the behaviour 
of the cost function versus the ordinal number of the temperature parameter in Fig.2, 
illustrating the case of DyMn6Ge6. In figure 3 it is shown the behavior of the amplitude of 
the magnetic moments of Dy and Mn atoms. The plot shows that there are a large 



 

dispersion at the stage of “magnetic structure solution” (starting phase of the algorithm) 
and a progress toward definite values within the “refinement” region.  
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Figure 3. Evolution of the magnetic moment of Dy and Mn versus the 
number of sequential temperature. Similar plots can be observed for 
other magnetic parameters (cone angles and magnetic phase angles). 

For a given set of constraints the final average R–factor should be reasonably good 
(below 20%) except for contradictory or false constraints. False minima are encountered 

when the number of free 
parameters is of the same 
order of magnitude than 
the number of 
observations and/or the 
observations are of bad 
quality (very weak 
magnetic reflections and 
large errors associated to 
them). Ambiguities can 
be easily discovered. 
When the intensity data 
do not depend on a 
parameter, this shows an 
anomalous behaviour: in 
a plot similar to that of 
Fig. 3, large oscillations 
persist even at low 
temperature. 

In conclusion, we 
have shown that the SA algorithm can be used for the magnetic structure determination 
even in the case of complex incommensurate magnetic structures. The method is 
straightforward and is fully implemented in the program FullProf that is publicly 
available [5]. 
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