Soft X-ray Tomography (SXT)

National Center for X-ray Tomography Supported by NIH-NIGMS & DOE-BER

Soft X-ray Tomography (SXT)

- Imaging whole, hydrated cells in the native state
- No fixatives, no stains
- Cryo-immobilized
- 50 nm isotropic resolution (not limit; source is 2.4 nm)
- See molecules using correlated fluorescence and x-ray tomography

Lawrence Berkeley National Laboratory

The Advanced Light Source

Soft x-ray microscope, Xm-2

Soft x-ray microscope, Xm-2

- Condenser zone plate focuses source onto specimen
- Objective zone plate magnifies object onto CCD camera

Zone plate lenses - diffractive optics

Condenser lens

Objective lens

Diameter = 1 cmOuter zone width = 50 nm Diameter = $63 \mu m$ Outer zone width = 50 nm

- Resolution determined by width of outermost zone of the lens
- As resolution of zone plate increases, depth of focus decreases

Specimen stage

Specimen stage

Le Gros MA, McDermott G, Cinquin BP, Smith EA, Do M, Chao WL, Naulleau PP, and Larabell CA (2014). J Synchrotron Radiation. 21, 1370-1377.

Specimen stage

Image between K shell absorption edges of C (284 eV) & O₂ (543 eV)

Absorption is linear with thickness & concentration

Hanssen et al (2012). *J. Struct. Biol.* 177, 224-232

Absorption is linear with thickness & concentration

Soft X-ray Tomography

- Whole, hydrated cells in near-native state (cryo-immobilized)
- Natural, quantitative contrast; absorption of x-rays linear

Comparing reconstruction methods

Filtered back projection (FBP)

Kremer et al. 1996

Conjugate Gradient Least Squares

Parkinson et al. 1996 Penalized-Likelihood

Stayman & Fessler 2004 L1 regularized Conjugate Gradient Least Squares *Vandeghinste et al.* 2011)

Soft X-ray Tomography

- Whole, hydrated cells in near-native state (cryo-immobilized)
- Natural, quantitative contrast; absorption of x-rays linear

Segmenting structures

Le Gros et al. (2016) Cell Reports. 17(8), 2125-2136

Segmenting structures

Plot histogram of all voxels

Le Gros et al. (2016) Cell Reports. 17(8), 2125-2136

Absorption is linear with thickness & concentration

Absorption is linear with thickness & concentration

Segmentation - machine learning

Pelt & Sethian. (2018). PNAS doi/10.1073/PNAS.1715832114.

Isotropic resolution

Full rotation vs. limited tilt

Cinquin et al. (2014). J Cellular Biochemistry. 115:2009-216

Biological applications

Segmentation of *E. coli*

Structural organization of S. cerevisiae

Uchida et al. (2011) Yeast. 28, 227-236

Quantitative analysis of S. cerevisiae

Cell volume

S

s

G2

G2

M

M

160 140

120 100

80

60 40

20

0

100

80

60

40

20

0

G1

G1

Range of Cell Vol. (µm³)

Average Cytosol Vol. (µm³)

9.00 Average Organelle Volume (μm^3) In Haploid Cells 6.00 3.00 0.00 G1 S G2 M Average Organelle Volume (µm³) In Diploid Cells 9.00 6.00 3.00 0.00

S

M

G2

Organelle surface area

Uchida et al. (2011) Yeast. 28, 227-236

G1

Phenotypic consequences of genetic knockouts

Mitochondria

Photosynethisis, Bioenergy

Krishna Niyogi

University of California Berkeley & HHMI

Chromochloris zofingiensis

Single cell

16 cells

Roth et al. (2017) PNAS. E4296-E4305, doi/10.1073/pnas.1619928114

Chromochloris zofingiensis

16 cell stage

Testing drugs to treat sickle cell disease

Darrow et al. (2016) J. Cell Science. 129, 3511-3517

Testing efficacy of drugs to reverse sickling

Darrow et al. (2016) J. Cell Science. 129, 3511-3517

Malaria-infected red blood cells

Leann Tilley Eric Hanssen

University of Melbourne Australia

Malaria-infected RBC

Stage

Stage

Hanssen et al. (2012) J. Structural Biol. 177, 224-232

Role of nuclear organization in gene expression

Neurogenesis: from stem cell to neuron

- About 1200 Olfactory Receptor (OR) genes found in 18 mouse chromosomes
- Each neuron transcribes one out of ~2400 OR alleles
- Allele selection occurs during neurogenesis

Heterochromatin organization during neurogenesis

Le Gros MA, Clowney EJ, Magklara A, Yen A, Markenscoff-Papadimitriou E, Colquitt B, Myllys M, Kellis M, Lomvardas S, and Larabell CA. In review.

From stem cell to neuron

Le Gros et al. (2016) Cell Reports. 17(8), 2125-2136

HeterochromatinEuchromatin

Nuclear structure and gene selection

Clowney et al. Cell. 151, 724-737

Glomeruli specificity

K Monahan and S. Lomvardas (2015) Ann Rev Cell Dev Biol. 31, 721-40

Does 3D organization of the nucleus matter?

Nuclear structure and gene selection

Clowney et al. Cell. 151, 724-737

Nuclear structure and gene selection

SXT

FISH

Silenced genes

LBR expressing cell

Wild type cell

OR expression disrupted

Clowney et al. (2012) Cell. 151, 724-737

Glomeruli specificity

Clowney et al. Cell. 151, 724-737

Nuclear structure and gene selection

Le Gros et al. (2016) Cell Reports. 17(8), 2125-2136

Chromatin condensation during neurogenesis

Stavros Lomvardas

Columbia University

Chromatin networks

TEM

No islands of heterochromatin

Le Gros et al. (2016) Cell Reports. 17(8), 2125-2136

Chromatin networks

Stem cell

Differentiated cell

Le Gros et al. (2016) Cell Reports. 17(8), 2125-2136

Le Gros et al. (2016) Cell Reports. 17(8), 2125-2136.

New information about the nucleus

- Heterochromatin ~ 30% more compacted (crowded) than euchromatin
- Increased compaction of heterochromatin during differentiation
- Chromatin networks; no islands of chromatin
- Nuclear volume directly proportional to euchromatin volume (active gene region)

Le Gros et al. (2016) Cell Reports. 17(8), 2125-2136

Nuclear reorganization during hematopoiesis

Camilla Forsberg

University of California Santa Cruz

Ugarte et al. (2015) Stem Cell Reports. 5(5), 728-470

From stem cell to blood cell

During differentiation:

Percent heterochromatin increases

Ugarte et al. (2015) Stem Cell Reports. 5(5), 728-470

From stem cell to blood cell

During differentiation:

Nuclear volume decreases and peripheral heterochromatin thickens

Ugarte et al. (2015) Stem Cell Reports. 5(5), 728-470

HU multimerization shift controls nucleoid compaction

HU - histone like protein

Hammel et al., (2016) Science Advances. doi: 10.1126/sciadv.1600650.

Topology of the human genome

First 3D structural models of the human genome at 4Mb resolution

Tjong et al. (2016) PNAS. Mar 22; 113 E1663-1672

Imaging molecules in context

Correlated fluorescence and x-ray tomography

Cryo confocal tomography

Le Gros et al. (2009) J. Microscopy. 235(1), 1-8

Cryo-light tomography

Do et al. (2015) Arch Biochem & Biophys 581:111-121.

Correlated fluorescence and x-ray tomography

Do et al. (2015) Arch Biochem & Biophys 581:111-121.

Mid51-GFP foci at ER - mitochondria contact sites

Elgass et al. (2015) J. Cell Science. 128(15), 2795-2804

Mid51-GFP foci at ER - mitochondria contact sites

Elgass et al. (2015) J. Cell Science. 128(15), 2795-2804

Mid51-GFP foci at ER - mitochondria contact sites

Elgass et al. (2015) J. Cell Science. 128(15), 2795-2804

National Center for X-ray Tomography

Mark Le Gros Gerry McDermott Jian-Hua Chen Axel Ekmann Venera Weinhardt Rosanne Boudreau Chao Yang Jeff Gamsby Tia Plautz Andreas Walter Elizabeth Smith

Collaborators

Stavros Lomvardas & Josie Clowney, UCSF, Columbia Barbara Panning & Karen Leung, UCSF Camilla Forsberg & Fernando Ugarte, UCSC Wah Chiu & Michele Darrow, Baylor College of Med Frank Alber, Univ Southern California Markko Myllys, Maija Vihinin-Ranta, & Jussi Timonen U. Jyväskylä Michal Hammel, LBNL John Tainer, MD Anderson Cancer Center James Sethian, UC Berkeley and LBNL LeAnne Tilley & Eric Hanssen, Univ Melbourne

National Center for X-ray Tomography http://ncxt.lbl.gov

Supported by:

NIH-NIGMS DOE-Biological & Environmental Research NIH Epigenomics Roadmap Grant NIH 4D Nucleome Project NIH-NIDA Gordon and Betty Moore Foundation Chan-Zuckerberg Institute