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1 Overview 
1.1 Introduction 
The Advanced Photon Source (APS), located at Argonne National Laboratory, is a synchrotron light source 
funded by the U.S Department of Energy (DOE), Office of Science-Basic Energy Sciences (BES) to produce 
high-energy, high-brightness x-ray beams. The APS has been operating since 1996 and has become of the 
largest scattering user facility in the world, averaging 5,500 unique users and producing more than 2,000 
scientific publications every year. Scientists from every state in the US and international users utilize the 68 
beamlines at the APS to conduct cutting-edge basic and applied research in the fields of materials science; 
biological and life science; physics; chemistry; environmental, geophysical, and planetary science; and 
innovative x-ray instrumentation. 

To maintain the APS at the forefront of X-ray science, BES and Argonne launched the APS-U project, a $815M 
investment that will deliver a comprehensive upgrade of the electron storage ring and X-ray beamlines. After 
more than a decade of planning and preparation, the storage ring has been replaced by a new Hybrid Multi-
Bend Achromat during the period April 2023 - April 2024. After 3 months of machine commissioning, the new 
storage ring has delivered a current of 125mA and a world leading electron emittance of 41pm.rad, almost 2 
orders of magnitude smaller than the previous machine. Return to user operation is underway, and the next 
few months will see a progressive commissioning of the 9 new and 15 enhanced beamlines offering 
transformative analytical capabilities for X-ray scattering spectroscopy, and imaging. The transformation of 
the APS will be expanded further in the next 5 years by upgrading an additional 8 beamlines and investing in 
additional computing infrastructure, through the project EXCEL@APS (Extend X-ray Capabilities with Extreme 
Light).    

More than ever before in the history of the APS, advanced computational approaches and technologies are 
essential in fully unlocking the scientific potential of the new facility. The upgraded source opens the door for 
new measurement techniques and increase in throughput, which, coupled to technological advances in 
detectors, new multi-modal data, and advances in data analysis algorithms, including artificial intelligence 
and machine learning (AI/ML), will open a new era of synchrotron light source enabled research. In particular, 
the high-brightness, and increase in coherent x-ray flux at the new APS is leading to significant increases in 
data rates and experiment complexity that can only be addressed with advanced computing. 

The overarching goal of the APS is to harness the power of computing, and the value contained in data to 
elevate the overall scientific impact and boost the operational efficiencies of the APS beamlines and 
accelerator complex. This will enable the APS and its users to help unlock new scientific opportunities and 
accelerate science through innovative data science, including AI/ML, scientific software, data management, 
and computing technologies. In order achieve this, the APS must remain at the cutting-edge of computational 
and computer science-, data-, and AI-driven discovery. 

The APS has developed a comprehensive strategy in order to realize this goal, the APS Scientific Computing 
Strategy. This strategy identifies five high-level strategic goals, along with high-level approaches to achieve 
these goals, for computing at the APS (see Table 1-1). The strategy then identifies activities and plans in the 
areas of AI/ML, data reduction and analysis software, computing infrastructure, data management, 
workflows, and science portals, controls, data acquisition, and detector integration, network architecture and 
infrastructure, and collaborations required over the coming years. 

Given the prominence of computing and data science presently, and in the foreseeable future, the APS is 
establishing a Computing Advisory Committee. This committee will provide specialized advice, expertise, and 
guidance to the Associate Laboratory Director for Photon Sciences (ALD-PSC) / APS Director on strategic 
development, review of practices and organization matters, and on the development of future policies where 
applicable. The Committee’s advice and guidance will help ensure that computational methodologies and 
technologies are leveraged by, and integrated into, the research and operations activities of the APS. 
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Table 1-1 High-level APS strategic computing goals and approaches. 

Computing Strategic Goals Computing Approaches / Strategy 

1. Enable High-Speed Discovery - 
Harness the unprecedented power of 
computing and data science expertise 
at Argonne to reduce the time to 
science. 

  

1. Deliver state-of-the-art network performance, and security and 
resiliency (Section1.2). 

2. Utilize Argonne Leadership Computing Facility (ALCF), and other 
supercomputing facilities, including the future High-Performance 
Data Facility (HPDF), for large-scale computing needs (Section 1.5, 
Section 1.8). 

3. Deploy HPC-enabled software and workflows using Globus for near 
real-time data processing (Section 1.6, Section 1.4). 

4. Apply AI/ML inference to accelerate data processing (Section 1.7). 
2. Unlock Exceptionally Challenging 
Experiments - Apply the confluence of 
Argonne’s strengths in AI/ML and 
autonomous experiments, large-scale 
simulations, and x-ray experiments to 
unlock otherwise unreachable 
complex scientific solutions.  

1. Deploy advanced controls infrastructure and tools in order to 
realize experiment feedback, for example, for rare event detection 
(Section 1.3). 

2. Combine large-scale simulations with experiment data during 
beamtime to drive experiments (Section 1.3, Section 1.5). 

3. Utilize edge computing for fast feedback at beamlines, and 
develop and apply algorithms for advanced computational 
techniques (Section 1.5, Section 1.6). 

4. Leverage AI/ML and digital twin capabilities to design and steer 
autonomous experiments (Section 1.7). 

3. Leverage Data for New Science - 
Take advantage of the opportunities 
created by the explosion of data at 
the APS coupled with AI to advance 
new science that is only achievable 
using combined knowledge beyond 
individual experiments.  

1. Leverage opportunities from the DOE Frontiers in Artificial 
Intelligence for Science, Security, and Technology (FASST) initiative 
(Section 1.7, Section 1.8). 

2. Utilize a facility-wide data management and workflow system and 
the Globus ecosystem to collect and organize data consistently 
(Section 1.4). 

3. Develop plan for FAIR data, open data, and metadata (Section 1.4). 
4. Apply persistent identifiers to APS output (e.g. awards and data) 

(Section 1.4). 
4. Empower Users to Realize the Full 
Potential of the APS - Provide APS 
users with the cutting-edge tools 
needed to produce world leading 
science.  

1. Deploy advanced beamline controls and experiment control 
systems to support real-time feedback and AI applications (Section 
1.3). 

2. Deliver data management, workflows, and portals for facile 
management and manipulation of data generated at the APS 
(Section 1.2, Section 1.4). 

3. Focus on data processing software aligned to beamline and user 
needs, including multi-modal data utilization (Section 1.6). 

4. Place AI/ML advances into operational use at instruments (Section 
1.7). 

5. Expand Collaborations - Leverage 
partnerships and initiatives to 
amplify the impact of Argonne and 
APS resources. 

 

1. Plan for an integrated facility approach to leveraging computing 
and data resources as part of the DOE SC ASCR Integrated 
Research Infrastructure (IRI) program and HPDF project (Section 
1.5, Section 1.8). 

2. Develop an engagement roadmap to integrate light source-
enabled research into the FASST initiative (Section 1.7, Section 
1.8). 

3. Leverage the 6-way collaboration among the DOE BES light and 
neutron sources to develop shared solution and approaches to 
common data and computing challenges (Section 1.8). 
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The APS has a decentralized computing organization with functional groups located in two divisions, the X-ray 
Science Division (XSD) and the APS Engineering Support (AES) division. The XSD Beamline Controls (BC) group 
is responsible for beamline data acquisition, through control and operations systems and software. The XSD 
Computational X-ray Science (CXS) group is mainly responsible for the development of theory, mathematical 
models, algorithms, and software for interpreting x-ray measurements. The XSD Scientific Software 
Engineering & Data Management (SDM) group is responsible for software engineering for data analysis 
applications and data management tools, enabling high-performance computing (HPC). The management and 
support of information technology resources are in the AES division Information Technology (IT) and 
Information Solutions (IS) groups. 

The outline of the rest of the document is as follows. The remaining sections provide a breakdown of 
strategies and tactics proposed in each functional areas in support of the 5 overarching strategic goals. This 
includes plans for networking architecture & infrastructure (see Section 1.2), controls, data acquisition, and 
detector integration (see Section 1.3); data management, workflows, and science portals (see Section 1.4); 
computing infrastructure (see Section 1.5); data reduction and analysis (see Section 1.6); AI/ML (see Section 
1.7); and effort funding and collaborations (see Section 1.8). Specific needs and plans for the APS-U feature 
beamlines are documented in Section 2. 

In addition to this strategy, each support group maintains its own detailed documents and plans describing 
goals for the current and next fiscal year: 

1.2 Network Architecture and Infrastructure 
A state-of-the-art high-performance network that is secure and resilient is a key underlying capability 
required to meet the facility’s strategic computing goals. Such a network is required to enable high-speed 
discovery (Goal 1) so the APS and its users can collect data at the high-rates now possible with the new 
source and cutting-edge detectors, quickly transfer data to large-scale computing resources, both on campus 
and geographically distributed, and retrieve results quickly. This network is also required to allow users to 
effectively access, manage, and manipulate data and experiments (Goal 4) from outside of the APS.  

Current State 

As data rates and volumes continue to grow (see Section 1.4), greater demands will be placed on the APS 
network. This is especially true for the new and upgraded beamlines part of the APS-U project, and future 
upgrades a part of EXCEL@APS and subsequent projects. The APS has had a long-term commitment to 
continuously update and enhance its network architecture and infrastructure to adequately serve beamline 
and user needs, and to follow cybersecurity requirements required by DOE. The APS Network Team has been 
working over the past years to develop a network architecture and infrastructure plan and to implement that 
plan to support the future needs of the facility. Figure 1-1 depicts the new APS network architecture and 
infrastructure plan. 

The center of the beamline APS network consists of a pair of core switches (HPE Aruba 6410) located in the 
APS data center. These Tier 1 switches provide all routing to beamline subnets and to other parts of the APS, 
Argonne, and the Internet via ESnet (https://www.es.net/), the interlaboratory network and internet service 
provider for the DOE laboratories. The core switches provide multiple 10/40/100 Gbps line rate ports. These 
core switches are connected via 4 x 40 Gbps uplinks to the APS Tier 2 firewall, which in turn connects to the 
Argonne Tier 1 firewall with 4 x 100 Gbps uplinks. These Tier 1 core switches have been augmented with 
distribution switches (HPE Aruba 9300) that provide 32 x 100/200/400 Gbps ports for beamline high speed 
uplink and storage connectivity. The upgraded Tier 1 core switches were installed in the spring of 2021. The 
additional distribution core switches were installed in 2023 and 2024. The Tier 1 Argonne firewall connects to 
the Internet via ESnet using 2 x 400 Gbps uplinks. The same core switches connect to the storage systems for 
the APS Data Management System (see 1.4), sector data storage systems, the dservs that host beamline 
control system configurations and software, and the APS accelerator network. 
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Each sector at the APS has Tier 2 network switch(es) that connect beamline devices and connect the 
beamline to the core Tier 1 switches. The Tier 2 switch(es) connect to beamline computers, control system 
EPICS IOCs, detectors and data acquisition servers, wireless access points, cameras, and controls hardware. 
Each Tier 2 beamline network switch will provide line rate 10/100/1000 Mbps ports for many of devices at 
the beamline, as well as high speed line rate 10/40/100 Gbps ports for data acquisition as needed. 

In this plan, a Tier 3 managed switch with 48 x 10/100/1000 Mbps ports is deployed at each experiment 
hutch for controls hardware stations to provide additional ports, a dynamic cabling environment, and to 
isolate beamline controls hardware traffic. 

An additional 96 pairs of single mode fiber have been installed from APS data center to each of the 
Laboratory Office Module (LOM) network closets; 768 pairs in total. This additional fiber infrastructure will 
provide sufficient network bandwidth from the beamlines to the data center for the next decade. 

A science DMZ has been established to directly connect the APS beamline network core to the ALCF. 
Currently four pair of single mode fibers connect the beamline core to the ALCF network core at 4 x 100Gbps. 
Static routing has been configured at both facilities to provide this direct path without passing through any 
security devices such as firewalls or IDS systems that would inspect this traffic and present network delays.  

Tactics related to the APS network architecture and infrastructure required to realize high-level goals: 

1. Complete implementation of network switch and cabling infrastructure for new beamlines to support 
performance requirements. 

2. Transition APS beamlines to Supervisory Control and Data Acquisition (SCADA) architecture for improved 
security and resiliency. 

3. Implement a terabit per second (Tbps) network between the APS and the ALCF to support performance 
requirements and utilization of ALCF for high-speed data processing. 

4. Create plans to upgrade additional beamline network infrastructure, as required by EXCEL@APS. 

Planning has been completed for 7 of the 9 APS-U feature beamline networks. Installation of these networks 
in underway. The APS aims to complete planning for the remaining beamlines by the end of this calendar 
year. 

The APS is adopting a SCADA architecture for the beamline control system network. Controls and data 
analysis network traffic will be separated and isolated from outside networks for maximum performance and 
security. The APS is converting beamlines to this model in a phased plan that is currently underway. The APS 
plans to complete this transition by the end of calendar year 2026. 

The APS plans to upgrade the network to the ALCF to a 1.6 Tbps network consisting of 4 x 400Gbps uplinks. 
This network will support the performance required to utilize the ALCF for real-time and on-demand 
workloads. This will be completed by the end of calendar year 2025. 

The APS will follow this same infrastructure and architecture plan to provide a consistent and state-of-the-art 
network as additional beamlines are upgraded. Note that EXCEL@APS is currently in the early stage (mission 
need approval). Detailed planning will be created post CD-1 approval.  



 

 
 
8 

 
Figure 1-1 APS network architecture and infrastructure. 
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1.3 Controls, Data Acquisition, and Detector Integration 
The deployment of advanced controls infrastructure and tools is key to enabling real-time experiment 
feedback required to unlock exceptionally challenging experiments (Goal 2). This is particularly valuable for 
rare event detection, where timely adjustments can significantly enhance the outcome of experiments. 
Additionally, advanced control systems are required to enable the integration of large-scale simulations with 
experimental data during beamtime to enable data-driven decision-making, optimizing experimental 
conditions in real time. Advanced beamline controls and experiment control systems will enhance the user 
experience better empowering users to realize the full potential of the APS (Goal 4). 

Current State 

Before APS-U, XSD operated a small number of scanning microscopes, the majority of which provided only a 
single data acquisition channel (e.g., fluorescence data acquisition). With APS-U, many more rapidly scanning 
microscopy instruments will be deployed, all requiring the rapid acquisition of positioner readback signals, 
rapid triggering and coordination of multiple sophisticated detectors, and high-bandwidth feedback to 
positioners. Figure 1-2 illustrates the complexity of implementing one scanning microscope system for APS-U.  

Also, before APS-U, XSD beamline controls relied heavily on VME-based infrastructure for experiment 
control. Each XSD-operated beamline typically has several VME crates, each with an input-output-controller 
(IOC) running a proprietary real-time operating system (VxWorks) and housing several VME cards that 
provide a variety of basic beamline functions such as motor step and direction signals as well as lower-
bandwidth beamline input-output (IO) such as analog, digital, relays, and thermocouple readback. VME has 
proven reliable over the decades, which is why there is still a large installed base in XSD. Nevertheless, 
various components of our VME installations are at end-of-life, and VME itself is gradually ebbing away. In 
addition, the pricing and licensing model for VxWorks has worsened in recent years, and there is uncertainty 
(and, therefore, risk) about how this will evolve.  

These considerations and others instigated a re-examination of the portfolio of supported hardware, 
software, and firmware to meet the needs of the APS-U instruments and the APS’s strategic computing goals. 
Proposed solutions were vetted with the beamline community at, for example, the 2019 APS Advanced 
Controls Workshop, and regular updates were made in various other forums for XSD. Briefly, the solutions 
adopted and vetted with instrument stakeholders are the following: 

a) ACSMotionControl motor controllers and drives are the new standard APS-U motion solution. This 
motion system uses EtherCAT technology to coordinate motors across multiple devices and includes 
built-in machine safety functions. 

b) A network-based motion system (OMS MXA) is available when high-density/low-duty cycle motors need 
support. 

c) Networked industrial IO devices from LabJack and Measurement Computing are to be used for lower-
bandwidth beamline input-output (IO) needs (analog, digital, relays, thermocouples) readback. 

d) The BC-designed softGlueZynq system provides FPGA performance for fast triggering/timing, and 
streaming data acquisition capabilities needed for APS-U instruments. softGlueZynq allows beamline 
users to construct FPGA circuits, and layout interconnections using EPICS process variables (PVs). 

e) A commercial FPGA DAQ appliance (ACQ2106) from D-TACQ Solutions Ltd. will deploy softGlueZynq 
solutions customized for each APS-U instrument's requirements. The appliance provides FMC slots for 
FPGA I/O cards, which will be selected to match each instrument's needs. 

The beamline controls group (BC) has used the lead-up to APS-U to develop support for this new 
infrastructure and test it in various environments. In addition to meeting the APS's strategic computing goals, 
all solutions deployed to the beamlines must also provide maintainability and adaptability, which are 
hallmarks of Beamline Controls support within XSD. 

Tactics related to APS beamline controls required to realize high-level goals: 
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1. Transition to a Fieldbus-based approach for device control. 
2. Transition to EPICS v7 in order to better facilitate data streaming and data integration at APS beamlines. 
3. Deploy Bluesky widely at the APS as an experiment control system. 

APS-U has jump-started work on deploying Tactics 1, 2, and 3. For instance, the 8-ID beamline (XPCS 
beamline) has been built and begun successful commissioning, employing Tactics 1, 2, and 3. Despite the 
jump-start provided by APS-U, XSD will continue to have a large installed (and slowly withering) base of VME. 
We suggest an XSD or PSC project to accelerate the transition to Fieldbus-based infrastructure. Another VME-
related gap is support for high-fidelity beamline trigger signals synchronized with the storage ring (e.g., for 
laser pump and x-ray probe experiments). The VME hardware and software currently used to support this is 
EOL and no longer supported except in a maintenance mode. We propose an ASD-led project with XSD to 
develop new FPGA-based tools for this capability.   

Tactic 2 is to further deploy EPICS v7 IOCs to the beamlines. EPICS is a robust, large-scale distributed control 
system. Its widespread and longstanding use at similar facilities worldwide enables collaboration with 
instrument scientists and controls communities within the APS, other DOE facilities, and abroad. A key 
motivator for the switch to EPICS v7 is the pvAccess protocol, which enables the manipulation and transport 
of structured data over the network. pvAccess might be considered an extremely high-performance data 
broker so it will form the bridge between instruments and the high-performance data stores and data 
reduction tools.  

One example of the power and utility of pvAccess, is the need to support the imminent deployment of new 
high data-rate detectors that can generate thousands of frames per second using tens of Gbps of bandwidth. 
The newly developed C++ and Python-based pvaPy framework (https://github.com/epics-
base/pvaPy/blob/master/documentation/streamingFramework.md) provides a streaming data framework 
for EPICS v7 that can combine multiple data sources and process data at thousands of frames per second (see 
Figure 1-3). The pvaPy framework will be the basis for fast data handling for XSD beamlines with first 
deployments at APS-U feature beamlines. 

As an example of the planned deployment of pvaPy, we consider the APS-U Era Beamline Data Pipeline (BDP) 
Project. The BDP is a cross-XSD effort to identify, demonstrate, and deploy a portable data pipeline solution 
that addresses APS-U Era beamline data needs. This project will create a template for APS beamlines and 
support groups to follow when deploying new instruments or data pipelines addressing detector integration, 
data movement, network infrastructure, storage systems, multi-tiered computing, and cyber security. The 
template has been validated in a laboratory setting and is in the midst of its first deployment to APS-U 
Feature Beamlines and APS-U Enhancement Projects. 

Tactic 3 is to further deploy the Bluesky controls framework to XSD beamlines. Bluesky is an organized set of 
Python-based libraries that enable experimental science at, e.g., beamlines within XSD. Based on Python, it 
provides structured access to the entire scientific Python ecosystem and enables interdisciplinary teams due 
to the common language. Figure 1-4 illustrates this concept. Python has also become the de facto tool for 
AI/ML applications using libraries like PyTorch and TensorFlow. Bluesky also handles multi-dimensional and 
asynchronous event-based sources and facilitates the creation of a common metadata catalog. For example, 
through the BDP, we have demonstrated integration into automated workflows that leverage the APS Data 
Management system, capture metadata, and initiate data reduction processes on Argonne’s leadership 
computing facilities, such as Polaris. 

One particularly exciting possibility and driver for Bluesky deployment is the first-class support for adaptivity 
and informed decision-making in experimental workflows that Bluesky enables. Bluesky provides a flexible 
API called Bluesky Adaptive that supports various adaptive algorithms, from simple rule-based adjustments 
to artificial intelligence and machine learning models. Three examples nearing first deployments are 
automated beamline alignment via integration of a digital twin, optimal scanning of XANES spectra facilitated 
via Bayesian optimization, and automatic monitoring and gain changes on pre-amplifiers to allow automated 
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data acquisition. In the first example, illustrated in Figure 1-5, our Optics group has created comprehensive 
digital twins [using Oasys (https://github.com/oasys-kit)] of selected APS beamlines to test automated 
alignment and optimize desired beam properties. Using in-line wavefront sensors developed by this same 
group and deployed on request at XSD beamlines, the system will be capable of objectives that are far more 
complicated than, e.g., minimum focal spot size. A particular wavefront at the sample position is an example 
of a more complicated objective that could be achieved assuming appropriate beamline optics. 

A second example nearing deployment is optimized XANES energy scans via Bayesian optimization that again 
leverages Bluesky Adaptive. In this example, a coarse energy scan is first performed. Then successive cycles of 
Bayesian optimization tell Bluesky, i.e., the beamline where to measure next to complete the scan with 
appropriate resolution and quality. The interconnection between Bluesky, i.e., beamline 25-ID, and the scan 
optimization algorithm is illustrated in Figure 1-6. In the third example, Bluesky and Bluesky Adaptive will 
monitor and automatically set the gain for pre-amplifiers used to collect spectroscopy data at beamline 25-
ID. The capabilities enabled by examples 2 and 3, and, to a degree, example 1, means that 25-ID can collect 
spectroscopy data automatically for extended periods (number of samples) and of high quality. We eagerly 
await further deployments like this for, e.g., adaptive scanning in microscopy, as areas of interest are 
identified and fed back to the control system for more comprehensive scanning. 

Bluesky deployment has been slower than anticipated for various technical and cultural reasons. We have 
under-estimated the staff development needs to transition effectively from procedural programming to 
historically used at the APS in spec to an object-oriented approach best suited to Bluesky. Focused training 
and upskilling using experienced Python trainers will be put in place to boost the Python literacy of beamline 
staff, and in strategic areas in XSD. We will conduct frequent assessments to determine the effectiveness of 
this campaign. In addition, the amount of hands-on support we can provide to beamlines interested in 
switching is limited for staffing reasons. There are several approaches we are proposing to address this 
challenge. In the early phases of deployment, we will prioritize and centralize our support to a limited 
number of beamlines to reach critical mass targeting a small set of objectives. These beamlines are chosen 
based on the need for innovative features offered or easily developed in Bluesky and, when possible, in areas 
where we can maximize staff participation. In the medium term, hiring additional dedicated support staff will 
be necessary to ensure this effort grows and succeeds. Hires in this area are in line with the APS’s objective to 
grow in the area of data science and AI/ML, as part of the 5-year staffing plan. Lastly, we recognize that 
change management is not straightforward. We plan to actively communicate the benefits of this technology 
shift by regularly featuring, through relevant forums, the innovative capabilities of Bluesky, such as Bluesky 
Adaptive that cannot be accomplished via spec, for instance, and engage with stakeholders in support of this 
initiative  

As it stands, the APS plans to rollout Bluesky to a select number of beamlines (1-ID, 2-ID/19-ID via 
queueserver and GUI), 4-ID, 8-ID, and 25-ID and USAXS (12-ID) over the next two years with a re-evaluation 
to follow. 

In parallel to these efforts, Bluesky-related information caches such as its GitHub repository, online 
documentation, and Jupyter notebooks have enabled training efforts on and early exploration of a large-
language model (LLM) called CALMS that will facilitate the use of Bluesky. The concept is illustrated in Figure 
1-7. CALMS should make it relatively straightforward for inexperienced users to create robust Bluesky plans 
and perform tasks like moving a diffractometer to a selected peak position in reciprocal space based on the 
state of a beamline and a sample’s material properties retrieved from the Materials Database.   
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Figure 1-2 Schematic of fast scanning and interferometry for the APS-U InSitu Nanoprobe (ISN) Feature beamline. 

 
Figure 1-3 pvaPy streaming framework depicting multiple data processing consumers. 

 
Figure 1-4 A portion of the scientific Python ecosystem that Bluesky can leverage. Credit: Jake vanderPlas, "The Unexpected 
Effectiveness of Python in Science", PyCon 2017. 

 
Figure 1-5 Schematic of Oasys digital twin integrated with a beamline via Bluesky and its Bluesky Adaptive framework. First tests 
are imminent at Sectors 8-ID and 25-ID. See L. Rebuffi, S. Kandel et al., Opt. Express 31, 39514 (2023). DOI: 10.1364/OE.505289. 
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Figure 1-6 Optimized XANES scan enabled via Bayesian optimization and Bluesky Adaptive. Contact: Ming Du. 

 
Figure 1-7 CALMS: an LLM-enabled scientific companion for, among many other things, facilitating the use of Bluesky at 
beamlines. Contacts: Eric Codrea and Mathew Cherukara. Figure courtesy of E. Codrea and F. Rodolokis. 

1.4 Data Management, Workflows, and Science Portals 
Data management, efficient workflows, and advanced science portals are essential for enabling high-speed 
discovery (Goal 1) at the APS. By deploying HPC-enabled software and utilizing the Globus Compute platform, 
near real-time data processing using large-scale computing systems, including leadership class systems 
becomes possible, accelerating research outcomes. The ability to leverage massive data for new science (Goal 
3) hinges on effective data management. Utilizing a facility-wide data management and workflow system, 
researchers can consistently collect and organize data and metadata. The creation of a plan for adherence to 
FAIR data principles and open data is one of the prerequisites to the reuse of data for new scientific 
exploration beyond the intention of the original experiment. Through these efforts, users will be empowered 
to fully tap the potential of the APS (Goal 4), with seamless data management, workflows, and portals 
facilitating data analysis and innovation. 

Current State 

The need for data management, workflow, and distribution tools, and data storage resources continues to 
grow. Prior to the replacement of the storage ring and the new and upgraded instruments as part of the APS-
U project, the APS X-ray Science Division beamlines collected on the order of 5 PB of raw data per year. Over 
the next decade, it is estimated that the data storage needs of the APS are anticipated to increase by at least 
two orders of magnitude to 100s of PBs of raw data per year (see Figure 1-8), reaching a peak when the 
facility and new and upgraded instruments are fully commissioned and the User community is back in full 
force. 
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The APS Data Management System consists of software and hardware tools that automate the transfer of 
data between acquisition devices, computing resources, and data storage systems. Ownership and access 
permissions are granted to the users signed-up to perform a particular experiment. A metadata catalog 
allows beamline staff to populate experiment conditions and information for access via a web portal. Users 
can download data at their home institutions or transfer data to computing centers using Globus Transfer 
(globus.org) or SFTP. At present, approximately 60 APS beamlines (XSD and non-XSD), i.e. the vast majority of 
beamlines, take advantage of this system. 
Medium-term data storage is available within the APS; longer-term storage systems are provided by the ALCF 
(see Figure 1-9). Currently, the APS provides approximately 10 PB of central disk storage for medium-term 
data retention, and several Data Transfer Nodes (DTNs) for reliable, high-speed data movement internally 
and externally. The ALCF currently provides approximately 10 PB of tape storage (easily expandable to meet 
future APS needs) for longer-term data retention. The ALCF has recently deployed a 100 PB community file 
system (Eagle) and a 100 PB project file system (Grand) along with additional tape storage that is available for 
APS use. 
The APS continues working with Argonne’s Data Science and Learning Division (DSL) and the Globus team to 
develop a computational data fabric for end-to-end data lifecycle management. This fabric, Globus Compute, 
connects and automates many stages of the data lifecycle from acquisition to processing to publication. 
Science web portals will allow APS users to view and download their data and reprocess their data on ALCF 
and other large-scale computing resources using Globus tools. The Materials Data Facility (MDF) and the DOE 
Office of Scientific and Technical Information will serve as a DOI generating service for APS datasets. 

The APS and Globus team have prototyped this computational fabric with the ALCF for many APS techniques 
(see Figure 1-10), including XPCS, ptychography (see Figure 1-11), High-Energy Diffraction Microscopy 
(HEDM), Laue microdiffraction, serial crystallography, and Bragg Coherent Diffraction Imaging (BCDI).  

Tactics related to data management, workflows, and science portals required to realize high-level goals: 

1. Deploy the next-generation storage system for operations use by beamlines. 
2. Harden existing and develop new data pipelines as beamlines return to operation. 
3. Develop a plan for the use of metadata, FAIR data, DOIs and persistent identifiers, and open data to 

expand and accelerate the generation of scientific knowledge and impact of the facility. 

The APS is in the procurement process for a new high-performance data buffer for APS beamlines. The 
system will be installed in phases over four years, resulting in a system with approximately 50 PB of storage 
and hundreds of GB/s of aggregate throughput available with GPFS. The system is a hybrid NVMe 
SSD/spinning disk system, where NVMe SSDs provide a high-speed landing space for data and spinning disks 
provide storage capacity. Due to the need for high-speed storage, the APS has accelerated its plans for 
implementing this system. The first two phases of this storage will be in operations use during the first 
quarter of calendar year 2025 and provide approximately 24 PB of usable storage with 300 GB/s of aggregate 
throughput. The storage capacity and throughput will increase as the final two phases are installed by the 
end of calendar year 2027. As more beamlines come online, the APS will reevaluate its needs for 
performance (potentially as high as 1 TB/s) vs. capacity, and can modify system specifications for the final 
two phases to accommodate. This system will enable the direct connection of detectors and analysis 
computers which will better enable near real-time views into data, data analysis, and experiment feedback 
and autonomous control, as well as reduce the turnaround time to training AI/ML models and quickly 
incorporating newly acquired data into models. The APS plans to stabilize its investment in storage annually 
so it keeps up to date with emerging technologies, needs, and sponsor requirements. 

As more beamlines return to operation, the APS plans to refine existing workflows and deploy new workflows 
using the APS Data Management System and the Globus Compute infrastructure. 
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In order to fully take advantage of the opportunities presented by the massive volumes of data generated at 
the APS, the APS will develop a plan for activities to collect and better use metadata and follow FAIR 
principles. The APS now creates DOIs for beamtime awards, and work is underway to create DOIs for 
beamlines and instruments. The APS will continue to explore DOIs for datasets, both to keep up with sponsor 
requirements for persistent identifiers, and to best leverage DOIs to advance scientific discovery through the 
reuse of data. These tools will help to serve as the basis for enabling searchable data catalogs and adopting 
FAIR, and possibly open, data practices. To help chart a path for these activities, the APS will take direction 
from the upcoming series of DOE SC Roundtables scheduled for the fall of 2024, and the APS will work closely 
with the 6-way light and neutron source collaboration (see 1.8 for more details). 

 

 
Figure 1-8 Anticipated aggregate APS X-ray Science Division data generation per year. Data generation during FY23 and FY24 is 
estimated to be lower due to the storage ring replacement period followed by the storage ring and beamline commissioning 
periods. 

 
Figure 1-9 Storage available for APS beamlines. A multi-PB data storage system located at the APS serves medium-term needs. 
The ALCF provides multiple systems for long-term storage. Capacity will be expanded as needed to meet sponsor requirements. 
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Figure 1-10 Standard workflow for file-based processing. 1) A detector generates an image from an x-ray experiment and writes 
to a local machine at the beamline. 2) The APS Data Management System monitors the local file system and uploads data files 
to central storage as they appear. 3) The APS Data Management System organizes data into directories for each beamline and 
experiment and assigns user access permissions. Users can then access data from Globus. 4) As data is uploaded, the APS Data 
Management System launches a processing job and performs any local preprocessing tasks. 5) The processing job launches a 
Globus Compute client. 6) The client initiates a Globus transfer to ALCF data storage. 7) The client submits a job as a service 
account to the on-demand queue for Polaris using the Globus Compute endpoint. 8) The processed results are published to a 
data portal created with the Globus Portal Framework as part of the ALCF Community Data Coop. 

 

 
Figure 1-11 Automation used to perform on-demand analysis of ptychography data using computing resources at the ALCF. 1) 
Diffraction patterns are collected at the APS. 2) A beamline scientist submits a ptychography workflow definition file to the 
Globus Automate service. 3) The Globus Automate service begins executing the workflow and transfers the data from the 
beamline to the ALCF compute resource. 4) Remote function calls are triggered that 5) run the ptychography reconstruction 
code. 6) Results are transferred back to the beamline. 
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1.5 Computing Infrastructure 
To enable high-speed discovery (Goal 1), the APS must leverage large-scale supercomputing resources, such 
as the ALCF, and the future HPDF [1], to address its computational demands. In order to unlock exceptionally 
challenging experiments (Goal 2), the APS must apply Argonne’s strengths in computing for large-scale 
simulations and x-ray data during beamtime to enhance the experimental process. Edge computing devices 
will provide rapid feedback at beamlines, ensuring that experiments can adapt dynamically and efficiently. 

Current State 

Demands for increased data processing at the APS are driven by new experimental capabilities enabled by 
the brightness increase and advances in detector data rates. Moreover, the increased reliance on multi-
modal experiments to answer new scientific questions requires more complex and sophisticated data 
processing algorithms. Increases in computing power are needed by advanced algorithms for existing 
techniques that, for example, provide higher-fidelity results, and to train AI/ML models. The need for real-
time analysis and feedback to make crucial experiment decisions and enable autonomous experiment 
steering also requires more computing cycles than have been traditionally utilized. 
As with data storage, the computing resources required by the APS are anticipated to grow dramatically from 
typically TFLOP/s of computing resources. to tens of PFLOP/s of on-demand computing resources for the 
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most advanced beamlines. There is wide variability in the computational requirements among techniques 
and processing approaches with those instruments and techniques that benefit most from high-energy, high-
brightness, and coherent x-rays driving most requirements [2]. 

The APS adopts a graded approach to resource utilization. Small-scale resources, such as multi-core 
processors and GPUs, local to beamlines will be used when sufficient. For moderate computational needs, 
the APS maintains many powerful GPU-equipped workstations and a computing cluster in the APS computer 
room, and ANL maintains computing resources as a part of the Laboratory Computing Resource Center 
(LCRC). For the most demanding computational problems, large-scale computing facilities must be used, 
including the ALCF, the National Energy Research Scientific Computing (NERSC) Center, and the Oak Ridge 
Leadership Computing Facility (OLCF). To mitigate challenges surrounding processing and storing such large, 
anticipated data volumes, the APS is exploring the utilization of edge computing resources coupled closely to 
detectors and instruments, to run AI/ML data reduction algorithms. Figure 1-12 shows the ALCF systems 
deployed over the past decades. See Figure 1-13 for a list of computing resources available at Argonne. 

 
Figure 1-12 Timeline showing ALCF systems deployed over the past decades. 

Integrated ALCF Supercomputing Resources at the APS: A New Era of APS Computing 

The new storage ring and new and enhanced instruments, provide data rates that cannot reasonably be 
supported only by local APS resources. The colocation of the APS and world-leading supercomputing 
infrastructure at the ALCF on Argonne’s campus provides an unprecedented opportunity for collaboration. 
The APS and ALCF have partnered to deliver a new model of computing, tightly coupling APS experiment 
instruments with ALCF supercomputers, to accelerate scientific discovery. 

The ALCF has deployed a new computing system, Polaris, in 2022. Polaris is a combination commodity 
CPU/GPU system with performance of approximately 44 PFLOP/s. Up to 4 PFLOP/s of computing is prioritized 
to explore on-demand use of high-end computing resources by experimental and observational facilities, 
including the APS. 

On-demand scheduling queues have been deployed for immediate access for APS jobs. Gateway nodes on 
this system will provide the ability for the APS to stream data directly to Polaris from detectors, avoiding local 
file I/O. The APS is working with Argonne’s Data Science and Learning Division and the Globus team to 
develop a computational data fabric for end-to-end data lifecycle management, Globus Compute (see 1.4 
above). A combined team of APS and ALCF scientists and engineers are developing end-to-end workflow 
pipelines for many techniques and beamlines that will connect APS instruments to this new resource [3]. 
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The APS has been involved in many activities aimed at using centralized and large-scale computing resources. 
Notable activities include: 

• A team comprising of staff at the APS, ALCF, and DSL have successfully demonstrated the first use of the 
new ALCF Polaris supercomputer for near real-time processing of XPCS data. 

• ALCF researchers demonstrated processing XPCS and serial crystallography (SX) jobs in an on-demand 
fashion [4]. 

• At SC’19, ALCF researchers demonstrated large-scale real-time reconstruction and visualization of 
tomography data. This demonstration won the first annual SCinet Technology Challenge (TC) [5]. 

• Argonne scientists have demonstrated tomographic reconstructions of a fixed adult mouse brain 
specimen on the Summit Supercomputer [6, 7]. This work won the SC’20 Best Paper Award. 

• A team of staff at the APS, ALCF, and DSL have demonstrated utilizing over 50 nodes of the ALCF Polaris 
supercomputer for on-demand near real-time processing of Laue microdiffraction data [8]. This work was 
demonstrated at SC’23. 

Edge computing offers the ability to process data quickly on or near detectors and experiment 
instrumentation without the need to first transfer all data to high-end computing resources. This is 
particularly promising for handling large data when coupled with machine-learning methods. Using only a 
subset of data, machine-learning models may be trained on supercomputers. The trained model is then run 
using edge computing devices to process newly acquired data, providing fast feedback for experiment 
steering. See Figure 1-14. For example, APS and Argonne researchers have developed deep neural networks 
that perform ptychography reconstructions hundreds of times faster than the conventional iterative 
approaches and require up to 5 times less data [9], and 200 times faster than the conventional pseudo-Voigt 
profiling to locate Bragg peak positions [10]. 

Tactics related to computing infrastructure required to realize high-level goals: 

1. Work closely with the ALCF to determine a suitable and sustainable access/allocation model for routine 
utilization of ALCF systems by the APS. 

2. Develop plans to utilize the resources of the future HPDF facility, and use the APS position as an IRI 
Pathfinder project to leverage developments from the IRI program. 

3. Take advantage of edge computing devices to complement computational tasks performed on large-scale 
computing resources. 

This model coupling the APS and the ALCF to more seamlessly utilize large computing resources to enable the 
data processing needed at the APS, as it is refined using Polaris, will be deployed on more computing 
resources at the ALCF and at Argonne. These capabilities will be deployed for many other APS techniques and 
beamlines for data processing during beam time and for post-processing by APS Users after allocated 
experiment time is over. The Aurora exascale supercomputer is designed to support numerical simulation, 
data analysis, and deep learning applications. To this end, it is architected with a mix of Intel CPUs and GPUs 
to deliver sustained performance of greater than one exaflop/s full-precision floating point operations per 
second, and substantially higher compute rates at reduced precision including AI applications. The APS will 
utilize this new class of supercomputer to couple the results of simulations and modeling with experiment 
data and train ML models in real-time. The APS will work closely with the ALCF to determine appropriate 
access mechanisms to ALCF systems and an appropriate allocation model for utilization by APS beamlines. 

The HPDF [1] will be a new DOE computing facility. Currently, in the early stages of planning, it is envisioned 
as a state-of-the-art resource for data science and research. The HPDF holds great potential to be a key 
enabler for the APS and its user community. The HPDF could provide seamless access to interoperable, 
scalable, and resilient computing resources: smaller-scale resources located at light source and neutron 
source Spokes, and larger-scale resources located at computing-facility Spokes and at the Hub(s), for real-
time data processing, post experiment refinement, and simulation. Additionally, the HPDF could provide data 
catalogs and storage connected to computing resources for data management and retention and post 
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experiment data processing for the User community, and especially aid AI/ML and digital twins efforts. The 
APS, and its light source and neutron source partners, continues to keep abreast of developments as HPDF 
planning progresses. 

The new DOE SC IRI program (https://www.osti.gov/biblio/1984466) is being brought into formation. This 
new effort aims to provide researchers with seamless interoperability of DOE’s unique data, user facilities, 
and computing resources. IRI is intended to be the infrastructure support, software, interface standards, and 
policies – that layers on top of existing DOE facilities making complex data-intensive workflows seamless and 
fast for research teams. The APS continues to remain involved in IRI activities, and most recently has been 
selected to participate as an IRI Pathfinder project. 

R&D for the application of edge devices and methods will accelerate with effort and funding from the recent 
projects, X-ray & Neutron Scientific Center for Optimization, Prediction, & Experimentation (XSCOPE), and 
Intelligent Learning for Light Source and Neutron Source User Measurements Including Navigation and 
Experiment Steering (ILLUMINE) projects. 
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Figure 1-13 Computing resources and respective specifications and performance available for use by the APS at Argonne. 
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Figure 1-14 Edge computing architecture using machine-learning models trained on supercomputers. 

1.6 Data Reduction and Analysis Software 
Data reduction and analysis plays a crucial role in accomplishing APS strategic computing goals. To enable 
high-speed discovery (Goal 1), the deployment of HPC-enabled software and workflows using Globus is 
essential for facilitating near real-time data processing. This approach accelerates the ability to extract 
meaningful insights from experiment data. For unlocking exceptionally challenging experiments (Goal 2), the 
application of advanced computational algorithms enables and enhances the ability to tackle difficult 
scientific problems. To empower users to realize the full potential of the APS (Goal 4), data processing 
software is being developed and refined to align closely with the specific needs of beamlines and users. This 
includes the ability to integrate multi-modal data, ensuring that users can fully leverage the diverse types of 
data generated by the new and upgraded beamlines at the APS. 

Current State 

The APS is focusing data analysis algorithm and software development in the areas needed to answer novel 
scientific inquiries enabled by the renewed APS. These areas are techniques driven by coherence, imaging, 
and high-energy, as well as multi-modal techniques. Algorithms and software are being developed to analyze 
and reconstruct massive data volumes, bridge across length and time scales, combined and understand data 
from multiple modalities, identify and classify features and patterns, and provide feedback to experiments 
dynamically using real-time reduction. 

Coherence, imaging, high-energy, and multi-modal techniques are already the most computationally 
intensive techniques performed at the APS. Throughput demands are expected to grow by as much as 
multiple orders of magnitude due to improved detectors and the upgraded source. Data reduction and 
analysis will rely heavily on the use of high-performance computing (HPC), utilizing appropriate technologies 
such as multi-threading, General Purpose Graphical Processing Units (GPUs), edge devices, and distributed 
computing environments to obtain results with near real-time completion, so that results enable user-driven 
or even automated steering of experiments. 

Most software is developed as open source and is made available with user community code contributions 
encouraged. A graded approach according to impact and priority is applied to development. Packaging and 
active support either as distributable applications or as Software-as-a-Service (SaaS) is provided for software 
systems that have been deemed to be most important for the success of APS and its users. 
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New efforts are underway to address the development of new algorithms and HPC software for multi-modal 
analysis, including 

• Fluorescence tomography 
• Fluorescence ptychography 
• Magnetic ptychography 
• Tomography diffraction 
• Bragg CDI and ptychography 
• New approaches to Laue diffraction reconstructions 

Key software developments that have been made in this area over the past years that align with priority 
needs are shown in Figure 1-15. Detailed descriptions and plans for algorithm and software development for 
each APS-U feature beamline, including funding sources and collaborative efforts, may be found in each APS-
U feature beamline’s area in section 2. A summary of required core software capabilities for these beamlines, 
software packages that are intended to address these needs, and their status may be found in Table 1-2. 
Beamlines not directly a part of the APS-U project still benefit from the reuse of tools developed for these 
priority applications. 

Table 1-2 Summary of software capabilities and software packages and their status for the APS-U feature beamlines. 

Beamline Capability Software Status 
ATOMIC Conventional Phase Retrieval Reconstructions for Bragg CDI cohere Complete 

Faster Conventional Phase Retrieval Reconstructions for Bragg CDI cohere In Progress 
High-Resolution Conventional Phase Retrieval for Bragg CDI cohere In Progress 
AI / Automatic Differentiation (AD) Methods cohere In Progress 

CHEX Conventional Phase Retrieval Reconstructions for Bragg CDI cohere Complete 
Ptychography in Bragg geometry TBD To Do 
Rod Analysis (COBRA) TBD To Do 
Dark Field X-ray Microscopy (DFXM) R&D Prototyping In Progress 
Multi-Tau & Two-Time XPCS Correlations XPCS-Eigen, XPCS-Boost Complete 
Surface XPCS XPCS-Eigen, XPCS-Boost In Progress 
Higher-Order XPCS Correlations R&D Prototyping In Progress 

CSSI Thin-film Structure Indexing GI-SAXS GUI Complete 
Coherent Surface Scattering Imaging R&D Prototyping In Progress 
Surface XPCS XPCS-Eigen, XPCS-Boost In Progress 

HEXM Near-field Diffraction MIDAS Complete 
Far-field Diffraction MIDAS Complete 
Diffraction (Scattering) Tomography MIDAS In Progress 
Imaging Tomography TomoPy, MIDAS Complete 

ISN XRF Elemental Fitting XRF-Maps Complete 
XRF Self-absorption Correction XRF-Maps In Progress 
Conventional Ptychography Reconstructions tike, ptychodus Complete 
Improved Ptychography Quality tike, ptychodus In Progress 

Polar Hard Resonant Magnetic Scattering XMCD tools, PyMCA Complete 
Hard Resonant X-ray Ptychography R&D Prototyping In Progress 
Bragg CDI Magnetic Contrast R&D Prototyping In Progress 
Tomographic CDI TBD To Do 

PtychoProbe XRF Elemental Fitting XRF-Maps Complete 
XRF Self-absorption Correction XRF-Maps In Progress 
Conventional Ptychography Reconstructions tike, ptychodus Complete 
Improved Ptychography Quality tike, ptychodus In Progress 

XPCS Multi-Tau & Two-Time XPCS Correlations XPCS-Eigen, XPCS-Boost Complete 
Higher-Order XPCS Correlations R&D Prototyping In Progress 
Spatial-Temporal XPCS Cross-Correlations R&D Prototyping In Progress 

3DMN Wire Scan Laue Reconstructions LaueGo Complete 
Mask Scan Laue Reconstructions R&D Prototyping In Progress 
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Applications will continue to be developed for improved performance and new algorithms. A more complete 
list of software produced at the APS can be found at https://www.aps.anl.gov/Science/Scientific-Software 
and https://github.com/AdvancedPhotonSource. 

Tactics related to data reduction and analysis software required to realize high-level goals: 

1. Support existing and develop new HPC-enabled software for priority areas of coherence, high-brightness, 
and high-energy driven techniques. 

2. Develop real-time streaming tools for feedback during experiments. 
3. Explore and deploy software and algorithms for use on edge devices. 
4. Develop algorithms and methods for advanced computational techniques and multi-modal data fusion 

and utilization. 
5. Apply robust optimization and uncertainty quantification. 

 

 
Figure 1-15 Key software packages under development at the APS. 

https://github.com/AdvancedPhotonSource
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1.7 Artificial Intelligence / Machine Learning (AI/ML) 
Artificial Intelligence / Machine Learning (AI/ML) advances are critical to achieving high-level goals at the APS. 
AI/ML inference must be applied to accelerate data processing, allowing for quicker analysis and 
interpretation of complex datasets to enable high-speed discovery (Goal 1). In order to unlock exceptionally 
challenging experiments (Goal 2), AI/ML, combined with digital twin technologies, will enable the design and 
steering of autonomous experiments, providing real-time insights and adjustments during experiments. 
AI/ML plays a pivotal role in analyzing and understanding the vast and diverse datasets generated at the APS, 
enabling the extraction of new scientific insights, leverage data for new science (Goal 3). To empower users to 
realize the full potential of the APS (Goal 4), advancements in AI/ML must be integrated into operational 
workflows at instruments, ensuring that users can benefit from cutting-edge technology to enhance their 
research capabilities. 

Current State 

Advanced data processing and analysis methods will be crucial to keep pace with the expected data rates and 
volumes, enabling real-time experiment steering and more efficient scientific discovery. Historical trends 
indicate that data rates and computing demands at x-ray sources have consistently outpaced available 
computing resources. Figure 1-16-A illustrates this by plotting the brightness at facilities over the past 60 
years against Moore's Law; it clearly shows that the increase in brightness – and consequently, the associated 
data and computing requirements – have exceeded transistor scaling. Similarly, Figure 1-16-B compares the 
brightness at various generations of facilities with the capabilities of the fastest supercomputers at those 
times, further demonstrating that the scaling of x-ray facility has surpassed the growth in available 
computational power. 

 
Figure 1-16 Data and compute needs are outpacing traditional computer scaling. Brightness of facilities over the last 60 years is 
plotted against Moore's law A) and the evolution of the fastest supercomputer in the world B). 

The development of new x-ray characterization techniques has historically depended on the simultaneous 
invention of algorithms and mathematical models. These computational tools are vital for analyzing and 
interpreting the data each new technique generates. For instance, several synchrotron imaging techniques, 
such as ptychography and tomography, owe their feasibility to specific computational imaging methods. 
While numerical algorithms have historically enabled groundbreaking science at synchrotron sources, the 
next-generation light sources pose significant computational challenges that many current algorithms may 
struggle to meet due to the sheer volume of data expected in the future. 

In response to these challenges, Artificial Intelligence and Machine Learning (AI/ML) techniques are emerging 
as powerful tools. They not only accelerate x-ray data analysis but also enhance the robustness and expand 
the potential applications of these methods. The overarching motivation of leveraging AI/ML at the APS is to 
unlock new scientific capability from existing instruments while improving and enhancing the users’ 
experience and scientific productivity. 



 

 
 
26 

Efforts in this space can be divided into four main thrusts: 

• AI4Analysis: Real-time analysis and visualization that is >100X faster and (sometimes) more accurate 
analysis than conventional methods. Enables real-time analysis of Gb/s data streams 

• AI4Steering: AI-guided steering of accelerator, instrument and experiments allowing autonomous 
accelerator and instrument tuning along with autonomous tracking and targeted acquisition of data 

• AI4Knowledge: Extracting scientific insight from very large, complex multi-modal datasets 
• LLMs as Scientific Co-Pilots: Context-aware large language models (LLMs) that help users navigate 

different aspects of experimentation at the APS; experiment planning, guidance on using complex 
instruments and analysis software, and directly performing basic instrument operations 

The APS has realized early successes applying AI in various aspects of accelerator and beamline operations. 
Some examples of how AI has been used to speed up data analysis, automate operations, improve scientific 
knowledge extraction, and assist users in experiment planning and execution follow. 

Work continues to develop and apply new AI/ML methods. The APS has and continues to invest heavily in 
AI/ML develops through the LDRD program (see the list of LDRDs in Section 1.8). With recent funding from 
the DOE for Artificial Intelligence and Machine Learning at DOE Scientific User Facilities (see Section 1.8), the 
APS is collaborating on AI/ML tools for spectroscopy data analysis, a digital twin for in silico time-resolved 
experiments, high-energy diffraction microscopy data reduction, accelerator tuning and optimization, and 
sharing and cataloging ML models and data. See https://www.anl.gov/ai for a full list of AI/ML developments. 

AI4Analysis - High Performance Computing (HPC) and AI@Edge Enables Real-time Imaging 

A representative example for the sheer volume of data that needs to be processed in real-time is 
ptychography. For example, conducting a single raster scan over a 1 mm by 1 mm area with a step size of 100 
nm can generate 200 terabytes of raw data when using a moderately sized detector with one million pixels 
and a 16-bit dynamic range. This results in a data transfer rate of 16 gigabits per second and necessitates 
approximately petaflops of computational power to carry out phase retrieval. 

Using ptychography as a representative technique, we demonstrated an AI-enabled workflow that can 
provide analysis on streaming data up to 8 KHz, facilitating real-time coherent imaging. The approach 
leverages High-Performance Computing (HPC) resources for online neural network training, alongside a cost-
effective, compact embedded GPU system running a trained neural network positioned at the beamline for 
near-instantaneous phase retrieval. Figure 1-17-A shows a schematic of the workflow. Through Globus 
Compute, data from the instrument is moved to a HPC resource like Polaris as soon as it is collected. HPC is 
used for conventional analysis and distributed model training. The trained model, in this case PtychoNN, 
learns to solve the inverse problem of phase retrieval for ptychography. This trained model is pushed to the 
edge computing device to provide live inference from the raw data stream from the detector which is 
displayed on the user screen. Figure 1-17-B, C shows examples of the raw detector image, the prediction 
from the neural network and the cumulative image obtained by stitching the predictions together. Online or 
continual training, i.e. the process of constantly updating the model during the course of the experiment 
ensures that the model is trained. 
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Figure 1-17 HPC + AI@Edge enables real-time, streaming ptychography. A) Schematic of workflow moving data from instrument 
to Polaris for labeled data generation and training. The trained model is pushed to the edge for live inference. B) Detector image 
that is input to the trained network. C) Single-shot prediction from the network. 

AI4Analysis - AI-accelerated Spectroscopy 

ML is used in x-ray emission and absorption spectroscopy for data processing and information extraction. The 
Argonne X-ray Emission Analysis Package (AXEAP) has been developed to process and analyze X-ray emission 
spectroscopy (XES) data collected with a two-dimensional (2D) position sensitive detector. AXEAP is designed 
to convert a 2D XES image into a one-dimensional XES spectrum and perform quantitative analysis in real 
time using unsupervised machine learning. K-means clustering is used to automatically determine regions of 
interest from 2D XES images. AXEAP can determine regions of interest (ROIs) in the 2D image data space at a 
rate similar to data collection, allowing real time comparisons during data collection, reducing the amount of 
data stored from gigabyte-sized image files to kilobyte-sized text files. With a user-friendly interface, AXEAP 
includes data processing for non-resonant and resonant XES images from multiple edges and elements. 

The determination of charge, spin, and chemical bonding information from extracted XES as well as x-ray 
absorption near edge structure (XANES) also benefit significantly from the use of ML. One important aspect is 
the featurization of 1D spectroscopy data for the supervised learning of chemical and bonding information. 
Because of the difficulty involved in obtaining experimental datasets with labeled ground truths, 
computational simulations of XES and XANES data are relied upon. Featurization approaches such as peak 
extraction, principal component analysis, variational autoencoders, and continuous wavelet transforms are 
used in conjunction with supervised ML methods such as multi-layer perceptron, random forest, and gradient 
boost regression models, to determine the most effective approach for extracting coordination numbers and 
other structural descriptors from raw spectra. 

AI4Steering - Autonomous Control of Complex Optical Systems 

To exploit the opportunities offered by the novel fourth-generation synchrotron radiation facilities like the 
upgraded APS, highly focused x-ray beams with minimum wavefront distortion, high stability, and variable 
focal sizes are required. Optical elements are being designed with challenging manufacturing requirements. 
However, optical aberrations, mechanical vibration and drift, and heat loading can all deform the beam 
wavefront and degrade the quality of the detectable signal. A possible solution to compensate for these 
wavefront aberrations is to use adaptive optics (AOs) combined with a real-time wavefront sensor and 
intelligent automatic control system. Several AO applications have been demonstrated, such as a prototype 
zoom mirror system and an active cooling mirror, using the traditional feedback control system based on the 
linear response model. However, time and history-dependent behaviors of AOs cannot be well represented 
by linear models, especially when considering timesteps on the order of seconds. Therefore, our research has 
been directed toward developing control systems based on AI, capable of rapidly achieving and keeping 
optimal and desired wavefront characteristics. In collaboration with the Advanced Light Source (ALS), the APS 
has successfully demonstrated ML control of a piezo-bimorph mirror, including a feed-forward neural 
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network to predict the mirror shape and an optimization model to drive to the desired surface shape. The 
system was initially developed and tested using a visible-light interferometer capable of recording the mirror 
surface profile. Recently, we demonstrated the system’s efficacy at an APS beamline by training the ML 
system with the absolute phase and the local radius of curvature of the wavefront measured with a 
wavefront sensor with different voltages applied to piezo electrodes. The system can systematically create 
wavefronts with desired shapes, such as a spherical wavefront focusing on the desired location. Fast and 
automatic alignment of optics is beneficial for experiments and can maintain the conditions on which the ML 
data is collected to ensure the model repeatability. The APS is currently developing AI-driven control systems 
to optimize beam properties, such as the focal spot position and size, by acting on positioning motors, e.g. 
the pitch angle of a mirror. To efficiently study different approaches, we have developed ultra-realistic digital 
twins using the OASYS simulation libraries to represent real components such as bendable mirrors. The APS 
envisions that the combination of the AI-driven auto-alignment system and the ML control of AOs will 
become a new beamline standard for next-generation light sources, where exceptional beam stability, 
repeatability, and total control of an aberration-free wavefront are required. 

AI4Steering - AI-guided Scanning Microscopy 

The APS has implemented the Fast Autonomous Scanning Toolkit (FAST) that uses the SLADS-Net NN, route 
optimization, and efficient and modular hardware controls to make on-the-fly sampling and scan path 
choices for a synchrotron-based scanning microscopy experiment. The NN used here, a fully connected 
network containing 5 hidden layers with 50 nodes each, is trained using only a generic natural image with no 
experiment-specific tuning. The FAST framework has a low computational cost that is negligible compared to 
the acquisition time, even when used within a low-power edge-computing device placed at the synchrotron 
beamline. This fast and sample-agnostic autonomous experimentation technique is well-suited for 
application in a synchrotron beamline that is versatile by nature. 

A schematic of the FAST workflow is shown in Figure 1-18. The FAST workflow is initialized by measuring a 
quasi-random selection of 1% of the sample area, then transferring these measurements to an edge device, a 
NVIDIA Jetson Xavier AGX, connected to the beamline computer. The edge device uses the inverse distance-
weighted interpolation to reconstruct the full image from the sparse measurement set. The SLADS-Net NN 
then uses the measurement information to identify a batch of 50 unmeasured points that would most 
improve the reconstructed image. The coordinates of these points are supplied to a route optimization 
algorithm to generate the shortest part for the scan motors to visit all these points. This path is supplied to 
the scan motors, two piezoelectric linear translation motors in step mode, through an EPICS interface, which 
restarts the data acquisition phase. The data acquisition and analysis steps are repeated until a pre-specified 
stopping criterion is achieved. 

 
Figure 1-18 a) Schematic of the FAST workflow. A series of quasi-randomly selected points were picked for the initial 
measurements. The result was transferred to the edge device which proceeded to generate an initial sample estimate. The rest 
of the experiment was conducted in a sequential and iterative manner: The edge AI determined the candidate points for the next 
measurements and calculated an optimal path. The path was scanned by the beamline control which sent the new results back 
to the edge AI for a new estimation. This iterative process continued until a predefined completion criterion is met. b) The points 
scanned at 20% of coverage. c) Estimation of the sample by edge AI at 20% coverage. d) Ground truth obtained after raster 
scanning at 100% coverage. The scale bar is 2 um. 
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AI4Knowledge - AI-NERD for XPCS Analysis 

Understanding and interpreting the dynamics of functional materials in situ represents a significant challenge 
in the fields of physics and materials science, primarily due to the complexities involved in experimentally 
probing materials across various length and time scales. X-ray photon correlation spectroscopy (XPCS) is 
particularly well-suited for examining material dynamics across a broad range of time scales. However, the 
spatial and temporal heterogeneity observed in material behavior can complicate the interpretation of 
experimental XPCS data. The APS has developed an unsupervised deep learning (DL) framework designed for 
the automated classification of relaxation dynamics from experimental data, eliminating the need for prior 
physical knowledge of the system. We showed how this method can expedite the exploration of massive 
datasets to pinpoint snapshots of interest. Furthermore, we employed this approach to directly link 
microscopic dynamics with macroscopic properties in a model system. Notably, this DL framework is both 
material and process agnostic, representing a significant advancement towards autonomous materials 
discovery. 

LLMs as Scientific Co-Pilots - Context-Aware Language Model for Science (CALMS) 

The ever-increasing instrument complexity at light source instruments poses greater challenges for domain 
scientists in designing experiments that effectively utilize and operate these sophisticated instruments. Large 
language models (LLMs) have the capability to perform intricate information retrieval, assist in knowledge-
intensive tasks across various applications, and provide guidance on tool usage. We reported initial 
experiments with a Context-Aware Language Model for Science (CALMS) aimed at aiding scientists with 
instrument operations and complex experimentation. CALMS can access and retrieve pertinent information 
from facility documentation, thereby answering questions about scientific capabilities and other operational 
procedures. Moreover, with its ability to interface with software tools and experimental hardware, CALMS 
can facilitate conversational operation of scientific instruments. Figure 1-19-A shows an overview of CALMS. 
CALMS consists of a LLM with access to document stores to answer user queries and access to control 
systems to perform instrument operation. Figure 1-19-B shows examples of CALMS answering questions on 
experimental planning, user operations and directly driving an instrument. 

 
Figure 1-19 A) Overview of CALMS: CALMS uses a large language model in conjunction with conversational memory, document 
stores, and experimental tools to answer user queries or take action to drive an instrument. B) Examples of CALMS interacting 
with a user in the experiment planning stage, guiding an user through data acquisition and directly calling instrument controls 
with user input. 

In addition to these advances, the APS is engaged in many other impactful AI/ML projects, including: 

• HPC & AI@Edge Enables Real-Time Peak Fitting: The APS has developed BraggNN, a deep-learning based 
method that can determine peak positions much more rapidly (200 times faster) and more accurately 
than conventional pseudo-Voigt peak fitting. 

• Accelerator Tuning and Fault Mitigation: The APS is developing ML methods to efficiently achieve and 
maintain optimal accelerator performance through reinforcement learning (RL) and Bayesian 
optimization (BO). 
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• Adaptive XANES Experimentation Through Physics-informed AI: The APS developed an adaptive sampling 
algorithm, which incorporates an acquisition function designed with prior structural knowledge about 
XANES spectra. 

• Learning Material Models from Diffraction Data: ML is used to scale up small models of ab initio level 
calculations to larger molecular dynamics box sizes, capturing the structural, dynamic, and physical 
properties of a material over a wide range of temperatures and pressures. These ML models provide new 
physical insights into the temperature dependent coordination environment of the disordered state as 
well as densities, self-diffusion constants, and ionic conductivities. 

• Data-Driven Discovery of Dynamics from Coherent Scattering: The APS developed a data-driven 
framework which employs neural differential equations to parameterize unknown real-space dynamics 
and a computational scattering forward model to relate real-space predictions to reciprocal-space 
observations. This framework was shown to recover dynamics of several computational model systems, 
including domain synchronization, particle clustering, and source fluctuation, without solving the phase 
reconstruction problem for the entire time series of diffraction patterns. 

• AutoPhaseNN - Unsupervised Physics-aware Deep Learning of 3D Nanoscale Bragg Coherent Diffraction 
Imaging: A neural network that uses known physics and learns to invert 3D Bragg CDI data completely 
unsupervised, i.e., without ever being shown sample images during training, that is more than 10x faster 
than traditional methods while also being more accurate. 

Tactics related to AI/ML required to realize high-level goals: 

1. Align with goals and activities related to the DOE Frontiers in Artificial Intelligence for Science, Security, 
and Technology (FASST) initiative, especially in the areas of AI-ready data and AI applications. 

2. Develop physics-aware AI methods and exploration of LLMs for experiments; continue development of AI-
enabled high-resolution coherent imaging methods including sparse-sampled ptychography, coherent 
surface scattering and Bragg ptychography with dynamical effects; and continue exploration of 
unsupervised deep learning (DL) techniques for phase retrieval that will accelerate and improve quality of 
reconstructions without human input. 

3. Create a plan to bring AI/ML advances into operational use at beamlines. 
4. Develop digital twins of beamlines and sample environments and integrate them into model training 

workflows. 

1.8 Effort, Funding, and Collaborations 
Fruitful collaborations support all the APS strategic computing goals. By leveraging the 6-way collaboration 
among the DOE BES light and neutron sources, institutions can develop unified solutions and approaches to 
address common data and computing challenges, enhancing efficiency and innovation. Creating an 
engagement roadmap to integrate light source-enabled research into the DOE’s Frontiers in Artificial 
Intelligence for Science, Security, and Technology (FASST) initiative ensures that cutting-edge AI 
advancements are applied to important scientific frontiers and that data generated at the light sources is 
leveraged to the fullest. An integrated facility approach to computing and data resources, as part of the DOE 
SC ASCR IRI program and HPDF project, will open the door to cohesive utilization of an increased number of 
advanced resources. These collaborative efforts will enable the APS to amplify its impact and effectiveness. 

Current State 

Effort 

In addition to the efforts described in Section 1.1, instrument and accelerator scientists from across the APS 
also provide effort towards this strategy in a multitude of ways, including setting goals, acting as liaisons for 
the user community, developing and applying algorithms as a part of technique and instrumentation 
development, assisting in the analysis and interpretation of data, and writing prototype and operational 
software tools.  
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Funding 

The APS-U project provides funding for networking infrastructure within the APS-U feature beamlines. 
Controls systems for the APS-U feature beamlines are also supported by the APS-U project. The APS-U project 
may provide funding for certain local computing resources at APS-U feature beamlines but the majority of 
resources and effort are outside of APS-U project scope. 

One way Argonne National Laboratory supports computational efforts at the APS is via Laboratory Directed 
Research & Development Funding (LDRD) funding. Beginning in FY11, the Tao of Fusion LDRD helped seed the 
TomoPy application and the APS Data Management System; likewise, the FY13 Next Generation Data 
Exploration: Intelligence in Data Analysis, Visualization and Mining LDRD was aimed at multi-modal analysis. 
Other previously funded LDRDs include Visualization and Mining, Modeling, Analysis, and Ultrafast Imaging 
(MAUI), Multimodal Imaging of Materials for Energy Storage (MIMES), Enabling Nanometer-scale X-ray 
Fluorescence Tomography, and Coherent Surface Scattering Imaging. 

Additional funded LDRDs of direct benefit to the APS in the computing space include: 

• FY17 Integrated Imaging 
• FY17 A Universal Data Analytics Platform for Science 
• FY17 COHED: Coherence for High-Energy Diffraction 
• FY17 Developing Advanced Coherent Surface Scattering Reconstruction Method Incorporating Dynamical 

Scattering Theory 
• FY17 Enabling Multidimensional X-ray Nano-Tomography 
• FY17 The Perfect Thermodynamics of Imperfect Materials 
• FY18 A.I. C.D.I.: Atomistically Informed Coherent Diffraction Imaging 
• FY18 Integrated Approach to Unravel Four Dimensional Spatiotemporal Correlation in Highly Transient 

Phenomena: Ultrafast X-ray Imaging and High-Performance Computing 
• FY18 Novel Capabilities for Ultra-fast and Ultra-low-dose 3D Scanning Hard X-ray Microscopy 
• FY19 Enabling Automatic Learning of Atmospheric Particles through APS-U 
• FY19 Finding Critical Processes of Deformation in Structural Materials with Artificial Intelligence 
• FY19 Learning and Differentiating: Using Artificial Intelligence to Image Beyond the X-ray Depth of Focus 

Limit 
• FY19 Machine Learning Enabled Advanced X-ray Spectroscopy in the APS-U Era 
• FY20 Machine Learning Methods for Spectral Data from X-ray Transition Edge Sensor Arrays 
• FY20 Tomographic Data Analysis Accelerated by Deep Learning 
• FY20 Self-supervised deep learning for x-ray imaging without reference data 
• FY20 Coded Apertures for Depth Resolved Diffraction 
• FY20 Intelligent Ptychography Scan via Diffraction-Based Machine Learning 
• FY20 AI-steer: AI-driven online steering of light source experiments 
• FY20 AI patterns for executable end-to-end biological programming experiments 
• FY20 Innovate High-Energy X-ray Diffraction and Machine Learning Driven Molecular Dynamics 

Simulation Study of Molten Chloride Salts 
• FY21 AutoPtycho: Autonomous, Sparse-sampled Ptychographic Imaging  
• FY21 Scalable DL-based 3D X-ray nanoscale imaging enabled by AI accelerators 
• FY21 ALCF Expedition Scalable DL-based 3D X-ray Nanoscale Imaging Enabled by AI Accelerators 
• FY21 High Pressure Material Characterization in 3-Dimensions Using X-Ray Diffraction Contrast Computed 

Tomography 
• FY22 Intelligent Analysis of Scattering and Spectroscopic Signatures of Quantum Materials 
• FY22 Development of 3D dichroic ptychography at the APS 
• FY22 High Energy X-Ray Imaging for Non-Destructive and Rapid Nuclear Forensics 
• FY22 Intermittent Dynamics in Hard and Soft Materials enabled by APS-U 
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• FY22 ALCF Expedition Deep Learning Accelerated X-ray Data Analysis for Experiment Steering 
• FY22 ALCF Expedition Machine earning at the edge for real-time analysis in X-ray ptychography enabled 

by hardware AI accelerators 
• FY22 ALCF Expedition AI accelerator for scalable DL-based 3D X-ray nanoscale imaging 
• FY22 ALCF Expedition Exploring Groq as a Real-time AI Inference Accelerator for Scientific Instruments 
• FY22 ALCF Expedition Scalability Study of AI-based Surrogate for Ptychographic Image Reconstruction on 

Graphcore 
• FY23 AI-Driven, Real-Time Optics Control System to Achieve Aberration-Free Coherent Wavefronts at 4th 

Generation Synchrotron Radiation Beamlines 
• FY23 Auto Parameter Calibration for X-ray Fluorescence Spectrum Fitting Using Machine Leaning 
• FY23 AI/ML Accelerated High-Performance Image Analysis using Supercomputers 
• FY23 Three-Dimensional Multiscale Diffraction Imaging of Nano-Scale Defect Kinetics During Corrosion 

and Mechanical Deformation 
• FY23 Developing Point-Focus High-Energy Diffraction Microscopy to Reveal Battery Material Degradation 
• FY23 The Development of Combining Ptychography and Small-Angle X-ray Scattering for Nanomaterial 

Characterization 
• FY24 Simulation-Guided High-Energy X-ray Diffraction Experiment Framework for Understanding 

Irradiation-Induced Slip Anisotropy in Structural Metals 
• FY24 Pushing the Experimental Envelope: High-Resolution and Ultra-High-Speed X-ray Imaging via 

Spatiotemporal Image Fusion 
• FY24 A Pipeline for Autonomous Comprehensive Reduction and Analysis of Sequential 2-Dimensional 

Diffraction and Scattering Data 
• FY24 LDRD Innovate (Seed) Crystal Graph-based Generative Model for X-ray Crystallography 

The APS has received funding and personnel support from the ALCF Data Sciences Program (ADSP): 

• Large-Scale Computing and Visualization on the Connectomes of the Brain 
• Developing High-Fidelity Dynamic and Ultrafast X-ray Imaging Tools for APS-Upgrade 
• X-ray Microscopy of Extended 3D Objects: Scaling Towards the Future, and Dynamic Compressed Sensing 

for Real-Time Tomographic Reconstruction 
• Dynamic Compressed Sensing for Real-Time Tomographic Reconstruction 

The NERSC Exascale Science Applications Program supported the APS on the Optimization of data-intensive 
tomography workflows at light sources project. 

The APS receives funding for AI/ML efforts in part from collaborative awards from the DOE for Artificial 
Intelligence and Machine Learning at DOE Scientific User Facilities, Lab 20-2261, and subsequent renewal 
awards: 

• A Collaborative Machine Learning Platform for Scientific Discovery, Principal Investigator (PI) - Alex 
Hexemer (Advanced Light Source, Lawrence Berkeley National Laboratory [LBNL]), Subramanian 
Sankaranarayanan (CNM-Argonne), Nicholas Schwarz (APS-Argonne) 

• A Digital Twin for In Silico Time-resolved Experiments, PI - Subramanian Sankaranarayanan (CNM-
Argonne), Maria Chan (CNM-Argonne), Mathew Cherukara (APS-Argonne), Pierre Darancet (CNM-
Argonne), Ross Harder (APS-Argonne), Haidan Wen (APS-Argonne), Jianguo Wen (CNM-Argonne) 

• Actionable Information from Sensor to Data Center, PI - Jana Thayer (Linac Coherent Light Source, SLAC 
National Accelerator Laboratory), Ian Foster, Zhengchun Liu (DSL-Argonne), Peter Kenesei, Antonino 
Miceli, Nicholas Schwarz (APS-Argonne)  

• Machine Learning for Autonomous Control of Accelerators, PI - Daniel Ratner (SLAC National Accelerator 
Laboratory), Michael Borland (APS-Argonne) 
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• Integrated Platform for Multimodal Data Capture, Exploration and Discovery Driven by AI Tools, PI - 
Eli Stavitski (National Synchrotron Light Source II, Brookhaven National Laboratory) Chengjun Sun, Steve 
Heald, Nicholas Schwarz (APS-Argonne) Maria Chan (CNM-Argonne) 

The APS receives funding from DOE for Advanced Scientific Computing Research for DOE User Facilities, Lab 
23-3030: 

• X-ray & Neutron Scientific Center for Optimization, Prediction, & Experimentation (XSCOPE), PI - Sven 
Leyffer (MCS-Argonne), Ian Foster (DSL-Argonne), Nicholas Schwarz (APS-Argonne), et al. 

• ILLUMINE - Intelligent Learning for Light Source and Neutron Source User Measurements Including 
Navigation and Experiment Steering, PI - Jana Thayer (LCLS), Stuart Campbell (NSLS-II), Alexander 
Hexemer (ALS), Nicholas Schwarz (APS-Argonne), Jonathan Taylor (SNS/HFIR), Vivek Thampy (SSRL) 

Additionally, the APS receives funding from other DOE awards: 

• Randomized algorithms for optimal data acquisition in Bayesian inverse Problems, PI - Youseff Marzouk 
(MIT), Zichao Wendy Di (MCS/XSD-Argonne) 

• Privacy-Preserving Federated Learning on Multimodal Data, PI - Kibaek Kim (ANL/MCS), Zichao Wendy Di 
(MCS/XSD-Argonne) 

The Expand X-ray Capabilities with Extreme Light at APS (EXCEL@APS) DOE MIE project proposes 
approximately $6.7M for advanced computing infrastructure at the APS. This project is currently in the DOE 
CD0 to CD1 phase. 

Collaborations 

Collaborations play a key role in the computing strategy for the APS. The APS actively collaborates with other 
facilities and organizations, and members of the APS User community to develop data analysis algorithms 
and software. As examples, most Argonne-funded LDRDs in this area involve collaborators from Argonne’s 
Mathematics and Computer Science Division, Computational Science Division, or Data Science and Learning 
Division. Select APS User groups have contributed greatly to analysis algorithms and software. 

The Center for Advanced Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley 
National Laboratory aids in the development of software, modeling, and mathematics. For example, CAMERA 
helped develop GISAXS algorithms and tools, and the SHARP ptychographic reconstruction package. Most 
recently CAMERA has been involved in the development of the XPCS-Eigen correlation application for XPCS 
and in the application of the Multi-Tiered Iterative Phasing (M-TIP) algorithm for the reconstruction of 
Coherent Surface Scattering Imaging (CSSI) data. APS staff and researchers participate regularly in annual 
workshops for tomography, ptychography, and XPCS organized by CAMERA. 

Innovative APS applications, improved Globus-based data management and transfer capabilities, and the 
Globus Compute platform has benefited, and continues to benefit, from ASCR support to Argonne research 
projects, such as RAMSES: Robust Analytical Models for Science at Extreme Scales and Braid: Data Flow 
Automation for Scalable and FAIR Science. Effort for CDI ptychography was initially funded by ASCR and then 
via Intelligence Advanced Research Projects Activity (IARPA) and Northwestern University. Early efforts for 
the MIDAS software for High-Energy Diffraction Microscopy (HEDM) data processing were funded by APS 
industrial partners. The APS and the National Synchrotron Light Source II (NSLS-II) at Brookhaven National 
Laboratory (BNL) have developed a comprehensive computing collaboration plan so as to best utilize our 
scare resources, especially related to expanding Bluesky use at the APS. Work on support for multi- and 
distributed-GPU N-dimensional complex FFTs is supported by NVIDIA and the ALCF. 

The APS has been involved in the NOBUGS conference community and maintains active participation in the 
series of hack-a-thons organized by the Experimental Facilities Computing (ExFaC) Working Group. 

Researchers at the APS and Argonne’s DSL Division co-organize the annual Workshop on Extreme-Scale 
Experiment-in-the-Loop Computing (XLOOP) at SC, The International Conference on High Performance 
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Computing, Networking, Storage and Analysis. This workshop focuses on the intersection of large-scale 
experimental science from user facilities, such as the APS, with high-performance computing. A peer review 
process led by the workshop’s program committee selects manuscripts for presentation. Accepted 
manuscripts are published by the IEEE or ACM. The program committee selects the recipient of the best 
paper award, and the workshop attendees selects the recipient of the best presentation award. The novel 
work presented during at this workshop will help the APS develop solutions critical to handling massive 
amounts of data generated during the APS-U era. 

APS and Argonne scientists also co-chair several conferences and/or serve on program committees, including 
the Parallel and Distributed Algorithms for Data Science track at the IEEE International Parallel and 
Distributed Processing Symposium (IPDPS’23), IEEE Conference on Image Processing (ICIP), IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP), Computational Imaging (COIMG), Machine 
Learning for Scientific Imaging (MLSI), High Performance Computing for Imaging (HPCI’22) at Electronic 
Imaging and the Denver X-ray Conference. These conferences cover wide range of large-scale imaging and 
data science problems.  

Scientists also organize AI/ML workshops and symposia at the annual Materials Science and Technology 
(MS&T) meeting, the International Materials Research Congress (IMRC) meeting, the Denver X-ray Conference 
(DXC), The Minerals, Metals and Materials (TMS) annual meeting, the American Crystallographic Association, 
and the International Union of Crystallography.  

The APS and the computing divisions within Argonne’s Computing, Environment, and Life Sciences (CELS) 
directorate hosted a series of town hall meetings in December 2020. Over 150 attendees participated from 
across Argonne. The goal is to develop a common vision for the future of APS computing within Argonne. 
Breakout sessions focused on new algorithm, math, and AI/ML, scalable software tools, workflow and 
orchestration, computing architecture, sustainable and discoverable data repositories, and networking. 

The X-ray Science Division has organized the APS Scientific Computation Seminar Series since 2015. This 
seminar series focuses on scientific computation for APS experiments. The series focuses on advanced 
software and computing infrastructure for analysis, reduction, reconstruction, and simulation. It provides an 
opportunity to learn about state-of-the-art computational techniques and tools and how they are being 
applied to science at the APS. 

The directors of the 5 BES funded light sources chartered a Data and Computing Working Group (also called 
the Light Source Data & Computing Steering Committee) in 2017. The role of the committee is to develop and 
maintain, with input from the directors, a strategic plan in computing and data. This is defined to include data 
acquisition, analysis, visualization and management, and the associated hardware and software 
infrastructure. The committee also advises and assists the directors in the coordination and execution of 
work in this area, consistent with that strategic plan, and is responsible for reporting and responding to 
charges, achieving consensus on paths forward, coordinating proposal submissions, and tracking funded 
activities. In 2024, this group expanded to include collaboration with the Spallation Neutron Source (SNS) and 
High Flux Isotope Reactor (HFIR) neutron source from Oak Ridge National Laboratory (ORNL).  

The Light Source Data & Computing Steering Committee has developed a common vision for computing 
across the light sources, the Distributed Infrastructure for Scientific Computing for User Science (DISCUS), and 
a decade long roadmap to achieve the vision. This vision proposes a transformative computational fabric that 
covers the full lifecycle of data generated at the BES Light Sources to accelerate discovery and insight. See 
Figure 1-20. 
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Figure 1-20 The Distributed Infrastructure for Scientific Computing for User Science (DISCUS) vision for computing at the light 
sources. 

In 2019, the directors of the five BES funded light sources and the directors of the 4 ASCR computing and 
networking facilities charted the BES Light Source and ASCR Computing Facilities Directors’ Data Working 
Group tasked with identifying how the ASCR facilities can help meet the needs of the BES facilities regarding 
data and computing. Membership is from the US DOE light sources and the US DOE supercomputing and 
networking facilities, and observers from the US neutron sources and Nano Science Research Centers (NSRCs) 
(ALS, APS, LCLS, MF, NSLS-II, SNS, SSRL, ALCF, ESnet, NERSC, and OLCF). The working group has formulated a 
plan for the desired data management architecture across the facilities, identified gaps in current planning, 
suggested a balance of responsibilities among the facilities, suggested next steps, and has undertaken pilot 
activities to utilize ASCR computing and networking facilities for processing and storing light source data. See 
Figure 1-21. 

 
Figure 1-21 The BES-ASCR Facilities Information Exchange held at Lawrence Berkeley National Laboratory on June 12, 2019 
established a working group across the BES light sources and the ASCR facilities. 

The BES Data Solutions Task Force Pilot Project is a 2-year pilot project to develop common software for data 
acquisition, management, and analysis across the five BES light sources (ALS, APS, LCLS, NSLS-II, SSRL). The 
project aims at creating a synergistic approach to software where the five light sources work as a team to 
deliver common solutions across the facilities. This is being achieved by leveraging tools and expertise from 
all the BES light sources and integrating complementary components, including Bluesky from NSLS-II, Xi-Cam 
from CAMERA and ALS, and XPCS-Eigen and TomoPy, high-performance data processing software, from the 
APS. The project is focusing on X-ray Photon Correlation Spectroscopy (XPCS), ptychography, and tomography 
beamlines across the facilities. At the APS, Bluesky and Xi-Cam were successfully deployed at the 8-ID XPCS 
beamline. 

Beginning in 2021, members of the APS and the other five BES light sources have participated in the DOE SC 
IRI Architecture Blueprint Activity (IRI ABA). This activity aims to produce the reference conceptual 
foundations to inform a coordinated whole-of-SC strategy for an integrative research ecosystem. The 
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overarching motivation is to achieve a more seamlessly composable, interoperable, and extensible ecosystem 
of SC experimental and observational user facilities with SC advanced computing, data, and networking 
infrastructure. This ecosystem approach is critical to accomplishing many envisaged SC, DOE, and national 
R&D priorities such as AI for Science, Advanced Computing Ecosystem, National AI Research Resource, Future 
of Advanced Computing Ecosystem, Earthshots, and other initiatives and priorities. Participants worked to 
gather insight from across SC programs and design cross-cutting blueprints addressing SC needs. 

The APS is part of a $10 million collaborative effort led by SLAC National Accelerator Laboratory, along with 
other DOE national labs: BNL, LBNL, and ORNL. The project is called Intelligent Learning for Light Source and 
Neutron Source User Measurements Including Navigation and Experiment Steering (ILLUMINE). It will focus 
on the testing, delivery and productive use of advanced computing methods and tools across DOE’s x-ray and 
neutron sources. 

Most recently, APS scientists have begun collaborating with Diamond Light Source on software for 
tomography reconstructions and AI/ML applications. 

Tactics related to enhancing collaborations required to realize high-level goals: 

1. Leverage the 6-way collaboration among the DOE BES light and neutron sources to develop shared 
solution and approaches to common data and computing challenges. 

2. Develop an engagement roadmap to integrate light source-enabled research into the DOE Frontiers in 
Artificial Intelligence for Science, Security, and Technology (FASST) initiative. 

3. Plan for an integrated facility approach to leveraging computing and data resources as part of the DOE SC 
ASCR IRI program and HPDF project. 

Most recently, the DOE Frontiers in Artificial Intelligence for Science, Security, and Technology (FASST) 
initiative is beginning to take shape. This initiative leverages DOE’s enabling infrastructure to deliver key 
assets for the national interest, including national security, attracting and building a talented workforce, 
harnessing AI for scientific discovery, addressing energy challenges, and developing technical expertise 
needed for AI governance. FASST is an exciting opportunity to harness the unique capabilities of the APS, the 
other light and neutron sources, the User community, and BES researchers with AI to unlock new science. 
The explosion of data coupled with AI creates opportunities to harness the value of data beyond individual 
experiments. Coupling AI/ML and experiment data with modeling/theory/simulation will enable new and 
more complex experiments. The APS be both contributors to and beneficiaries of advanced AI/ML efforts as 
both large data providers and as consumers of AI/ML output. To this end, the APS intends to align with goals 
and activities related to the FASST initiative. 

The new DOE IRI program is being brought into formation. This new effort aims to provide researchers with 
seamless interoperability of DOE’s unique data, user facilities, and computing resources. IRI is intended to be 
the infrastructure support, software, interface standards, and policies – that layers on top of existing DOE 
facilities making complex data-intensive workflows simple and fast for research teams. The APS continues to 
remain involved in IRI activities, and most recently has been selected to participate as an IRI Pathfinder 
project. 

The HPDF will be a new DOE computing facility. Currently, in the early stages of planning, it is envisioned as a 
state-of-the-art resource for data science and research. The HPDF holds great potential to be a key enabler 
for the APS and its user community.  The HPDF could provide seamless access to interoperable, scalable, and 
resilient computing resources: smaller-scale resources located at light source and neutron source Spokes, and 
larger-scale resources located at computing-facility Spokes and at the Hub(s), for real-time data processing, 
post experiment refinement, and simulation. Additionally, the HPDF could provide data catalogs and storage 
connected to computing resources for data management and retention and post experiment data processing 
for the User community, and especially aid AI/ML and digital twins efforts. The APS, and its light source and 
neutron source partners, continues to keep abreast of developments as HPDF planning progresses. 
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2 APS-U Feature Beamlines 
Table 2-1 Summary of APS-U feature beamlines. 

Feature Beamline Synopsis 

ATOMIC Uses the enhanced coherence of the APS-U x-ray beam for high-resolution studies of the 
structural, chemical, and physical properties exhibited by advanced functional materials by 
acquiring atomistic structural information across many length scales in full three-
dimensional detail. 

Coherent High-Energy X-rays (CHEX) Use coherent x-ray techniques to advance the frontier for in situ, real-time studies of 
advanced materials synthesis and chemical transformations in natural operating 
environments, employing condensed-matter physics and environmental science. 

Coherent Surface-Scattering Imaging (CSSI) Combines a surface X-ray probe using novel coherent scattering methods with state-of-
the-art X-ray optics and detectors to study a range of materials surface and interface 
phenomena. 

High-Energy X-ray Microscope (HEXM) Investigates structure and evolution within bulk materials, often in extreme environments, 
with the established high-energy X-ray scattering techniques and novel coherence-based 
techniques enabled by APS-U. 

In Situ Nanoprobe (ISN) An x-ray nanoprobe designed to have a relatively large optical working distance enabling 
investigation of complex functional materials and materials systems such as catalysts, 
batteries, photovoltaic systems, and nanoscale Earth and environmental samples, during 
synthesis, operation, and under actual environmental conditions. 

Polarization Modulation Spectroscopy (Polar) Generates photon beams with highly tunable and modulated polarization states for 
imaging electronic and magnetic inhomogeneity in quantum materials with ~ 50 nm 
resolution as well as discovery of novel electronic states of matter at extreme pressure 
conditions (P < 7 Mbar). 

PtychoProbe Realizes the highest possible spatial-resolution X-ray microscopy both for structural and 
chemical information, with the goals of focusing an X-ray beam to a 5-nanometer spot and 
ultra-fast scanning of the beam across the sample being studied. 

X-ray Photon Correlation Spectroscopy Advances studies in physics and materials science and engineering including dynamic 
heterogeneity, structural dynamics in super-cooled liquids, and fluctuations associated 
with competing mesoscale interactions in emergent materials. 

3D Micro and Nano (3DMN) Diffraction Addresses a wide range of problems in materials science, physics, and geoscience by 
providing small, intense X-ray spots (between 50 and 200 nanometers) to investigate 
spatial variations and correlations of strain and structure that define a wide range of 
scientifically and technologically important materials. 

 

2.1 ATOMIC APS-U Feature Beamline 

2.1.1 Summary 

The ATOMIC APS-U feature beamline will be dedicated to coherent x-ray diffraction imaging experiments for 
a diverse scientific community; experiments will exploit the brilliance of the upgraded source to study 
fundamental materials structures. 

In the APS-U era, the ATOMIC APS-U feature beamline will perform Bragg CDI acquisitions in two modes: fast 
and high-resolution. Table 2-2 shows estimated data generation rates at the ATOMIC APS-U feature 
beamline, and current data rates at the 34-ID-C instrument, for comparison. The ATOMIC APS-U feature 
beamline is anticipated to collect approximately 250 to 300 TB of raw data per year, in comparison to 
approximately 0.65 TB of data collected today at the 34-ID-C Bragg CDI instrument. This represents a nearly 
400x increase in data. These data generation estimates form the basis for networking infrastructure, controls, 
data management, and data processing planning. 

Table 2-2 Data generation rates today at the 34-ID-C Bragg CDI instrument (for comparison) and estimated data generation 
rates at the ATOMIC APS-U feature beamline. 
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Today Bragg CDI ASI Si Timepix, 
ASI GaAs Timepix+++ 

0.25 0.2 0.05 80 60 3.38 90 0.65 

APS-U 
Era++++ 

Fast Bragg 
CDI 

TBD 1.00 20.0 20.00 80 500 1,350.00 80 220 

High-
Resolution 
CDI 

TBD 61.22 0.2 12.24 80 > 6,000 826.47 20 35 

* The collection rate is high, but the frames are combined and written at a lower rate. 
** Based on 1,440 minutes in one day. 
+ The data set sizes are approximate and representative of typical experiments, as this value varies. 
++ Based on 210 days of beam time per fiscal year. 
+++ The number of pixels for ASI Si Timepix is 65,536 and ASI GaAs Timepix is 262,144, however the frame size is typically cropped. 
++++ The APS-U project has descoped certain parts of the ATOMIC Feature beamline, including detector purchases. Although the detectors listed 
in the table may not be purchased as a part of the APS-U project, this table represents the desired long-term potential capabilities intended for 
this beamline. 

2.1.2 Network Architecture and Infrastructure 

Network infrastructure needs will be addressed by the facility plan described in 1.2. 

2.1.3 Controls, Data Acquisition, and Detector Integration 

Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, 
Equipment Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 

2.1.4 Data Management, Workflows, and Science Portals 

The APS-U ATOMIC feature beamline will leverage the data management, workflow, and science portal 
efforts described in 1.4. The APS Data Management System, the facility-wide software and hardware system 
for managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. For the ATOMIC APS-U feature beamline, workflows will provide a pipeline to automatically 
run tools to remove artifacts from data, reconstruct Bragg CDI data set, and view results. 

2.1.5 Computing Infrastructure 

Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources will be provided for on-the-fly data processing and experiment steering. Computing capacity for 
larger data processing tasks and for post-experiment processing and analysis will be provided by computing 
centers, including the ALCF and Argonne’s Laboratory Computing Resource Center (LCRC). The APS Data 
Management System and Globus tools will be used to seamlessly integrate these resources. 

2.1.6 Data Reduction and Analysis Software 

The preliminary step is finding diffraction peaks from a crystal sample. This is accomplished by using the 
micro-diffraction technique and analyzing the captured data with the LaueGo software package. The data 
collected during this phase is only used to find the coordinates to guide the sample stage during data 
acquisition and is not retained. 

The APS develops and supports the cohere software package for Bragg CDI data. The software is available as 
an open-source package (https://github.com/AdvancedPhotonSource/cohere). The package performs routine 
data correction, formatting, reconstruction, and visualization for Bragg CDI data. cohere currently implements 
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conventional phase retrieval algorithms. It is written in Python and uses the ArrayFire package for data 
processing on CPUs and GPUs. Work is underway to add additional backend library choices so that ArrayFire 
can be replaced with CuPy or NumPy for easier distribution and deployment at computing centers. 

The current feature set and performance of cohere is adequate for most of today’s needs. However, the 
estimated approximate 400-fold increase in overall data that will be generated at the ATOMIC APS-U feature 
beamline, and the increase in size of individual datasets necessitates improvements and advances in software 
and algorithms. 

The APS is currently developing higher-performance implementations of conventional phase retrieval 
algorithms and exploring novel AI/ML methods that may replace computationally complex phase retrieval 
methods. Table 2-3summarizes Bragg CDI data reduction needs, approaches, and status for the ATOMIC APS-
U feature beamline. 

AutoPhaseNN - Unsupervised Physics-aware Deep Learning of 3D Nanoscale Bragg Coherent Diffraction 
Imaging: A neural network that uses known physics and learns to invert 3D Bragg CDI data completely 
unsupervised, i.e., without ever being shown sample images during training, that is more than 10x faster than 
traditional methods, enabling real-time analysis, while also being more accurate. AutoPhaseNN has been 
integrated in to cohere, providing users the option of starting phase retrieval from an initial guess provided 
by AutoPhaseNN (see Figure 2-1). 

The APS is optimizing implementations of conventional phase retrieval algorithms in cohere for better 
performance. In order to process data quickly in the APS-U era using conventional phase retrieval 
approaches, the APS is developing distributed-memory CPU and multi-GPU implementations of presently 
utilized algorithm. N-dimensional complex FFTs are at the core of conventional phase retrieval (and many 
ML) algorithms. The anticipated size of high-resolution Bragg CDI datasets and intermediate results will be 
too large to fit in the memory of a single GPU. The APS is working with the ALCF and a team at NVIDIA to 
realize better, optimized multi- and distributed-GPU support for N-dimensional complex FFTs. 

Argonne researchers are exploring the use of AI and Automatic Differentiation (AD) as a high-performance 
alternative to conventional phase retrieval algorithms for Bragg CDI. This new workflow leverages a library of 
pre-computed, large-scale Molecular Dynamics (MD) simulations to provide on-the-fly, best guess structure 
to measured diffraction data through a trained deep convolutional neural network. Predictions are displayed 
in real-time at the instrument and are also used as the initial guess for iterative refinement through AD. This 
two-step approach will enable real-time feedback to an experiment and provide the highest possible fidelity 
in image reconstruction. A recently funded ALCF Expedition LDRD is focusing on using AI accelerators, such as 
SambaNova for Bragg CDI calculations. 

Table 2-3 Summary of Bragg CDI data reduction needs, approaches, and status for the ATOMIC APS-U feature beamline. 

Capability Algorithm / Software Requirement Status 
Conventional Phase Retrieval 
Reconstructions 

CPU and GPU software for Bragg CDI 
reconstructions 

Done – APS Operations 

Faster Conventional Phase 
Retrieval Reconstructions 

Scalable distributed-memory CPU and GPU 
implementation of conventional phase retrieval 
algorithms 

In Progress – APS Operations 

High-Resolution Conventional 
Phase Retrieval Reconstructions 

Support for multi- and distributed-GPU N-
dimensional complex FFTs 

In Progress – APS Operations working with the 
ALCF and NVIDIA 

AI / Automatic Differentiation 
(AD) Methods 

A deep learning (DL) approach to structure and 
strain prediction from raw X-ray diffraction data 
without the use of phase retrieval algorithms 

Demonstrated at low resolution – LDRD 

A CNN training set generator and a trained CNN 
for the study of metals; this can grow to other 
advanced materials without changes to the 
underlying workflow 

Demonstrated – LDRD 

Physics based image generation workflow 
installed at the CDI instrument to analyze 
coherent diffraction data in real-time 

In Progress – LDRD 
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Network optimization and combining deep 
learning with automatic differentiation to enable 
highest possible image reconstruction accuracy 

Demonstrated – LDRD 

Scale to TB dataset sizes To do – APS Operations 

 

2.1.7 Effort, Funding, and Collaborations 

Network infrastructure to the edge of the ATOMIC APS-U feature beamline will be provided by APS-U 
funding. All other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-
wide data management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 
FTE per year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to 
the ATOMIC APS-U feature beamline for on-the-fly processing and experiment steering will be provided from 
APS-U funding. Large-scale computing resources are provided by APS Operations funding, ALCF funding, and 
Argonne Laboratory Computing Resource Center (LCRC) funding as described in 1.5. The APS dedicates 
approximately 1 FTE per year for Bragg CDI software development from APS Operations funding. 

Work on support for multi- and distributed-GPU N-dimensional complex FFTs is supported by NVIDIA and the 
ALCF. 

The following LDRD funding was awarded to support these efforts: 

• A.I. C.D.I.: Atomistically Informed Coherent Diffraction Imaging (FY18) 
• Finding Critical Processes of Deformation in Structural Materials with Artificial Intelligence (FY19) 
• Scalable DL-based 3D X-ray Nanoscale Imaging Enabled by AI Accelerators (ALCF Expedition LDRD - FY21) 
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Figure 2-1 AutoPhaseNN within cohere - AutoPhaseNN provides an initial guess for iterative phase retrieval run through cohere. 
Results are obtained faster and are more accurate than conventional iterative phase retrieval methods. 

2.2 Coherent High-Energy X-rays (CHEX) APS-U Feature Beamline 
2.2.1 Summary 

The Coherent High Energy X-rays (CHEX) APS-U feature sector will advance the frontier for in situ, real time 
studies of materials synthesis and chemical transformations in natural operating environments, using the 
unprecedented coherence of the high energy X-ray beams that will be provided by the upgrade. State-of-the-
art experimental techniques that will be used, include, but are not limited to, Bragg coherent diffraction 
imaging (BCDI), Bragg ptychography, coherent Bragg rod analysis (COBRA), dark field X-ray microscopy 
(DFXM), and X-ray photon correlation spectroscopy (XPCS). These approaches will be used to provide 
transformative insight into materials structure, heterogeneity and disorder, chemical and long-range 
interactions, atomic-level dynamics, and structural, chemical, and morphological evolution under challenging 
environmental conditions and a wide range of time frames. 

When fully built out, the CHEX sector will consist of four branch lines, with each line having two experimental 
stations. Two canted undulators will be used to operate one of the branches at tunable energies from 5-60 
keV, while the other three branch lines will operate at fixed selectable energies of 15, 25, or 35 keV (D/E and 
F hutches) or 45, 75, or 105 keV (G hutch). The multiplexed nature of the design will allow up to four separate 
experiments to be performed simultaneously (one per branch line). The in-situ studies that will be performed 
at these stations are often data-intensive, due to desired frequent periodic monitoring of processes over long 
times, e.g., millisecond resolution over seconds, or second resolution over thousands of seconds. The current 
plans are to primarily use pixel array detectors with small (55-75 µm) pixel sizes, e.g., Lambda 750K or Eiger 
1M. Under these conditions, a preliminary conservative estimate is that on the order of 1.5 TB of data can be 
generated per 24 hours of operation. As faster detectors with smaller pixel sizes become available, this data 
generation rate will increase correspondingly. 

2.2.2 Network Architecture and Infrastructure 

Network infrastructure needs will be addressed by the facility plan described in 1.2 
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2.2.3 Controls, Data Acquisition, and Detector Integration 

Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, 
Equipment Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 

2.2.4 Data Management, Workflows, and Science Portals 

The CHEX APS-U feature beamline will leverage the data management, workflow, and science portal efforts 
described in 1.4. The APS Data Management System, the facility-wide software and hardware system for 
managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. For the CHEX APS-U feature beamline, workflows will provide a pipeline to automatically run 
data processing software for preliminary analysis of coherent imaging and XPCS data, with a goal of providing 
near-real-time feedback useful in planning and modifying experiments. 

2.2.5 Computing Infrastructure 

Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources will be provided for on-the-fly data processing and experiment steering. Computing capacity for 
larger data processing tasks and for post-experiment processing and analysis will be provided by computing 
centers, including the ALCF and Argonne’s Laboratory Computing Resource Center (LCRC). The APS Data 
Management System and Globus tools will be used to seamlessly integrate these resources. 

2.2.6 Data Reduction and Analysis Software 

The experimental techniques that will be used at CHEX, include, but are not limited to, Bragg coherent 
diffraction imaging (BCDI), Bragg ptychography, coherent Bragg rod analysis (COBRA), dark field X-ray 
microscopy (DFXM), and X-ray photon correlation spectroscopy (XPCS). Since it is anticipated that there will 
be at least an order-of-magnitude increase in data rates and volumes at the APS over the next decade, 
combined with continual rapid developments in these coherent imaging and spectroscopy, there is a great 
need for there to be a concomitant emphasis on the development of advanced data analysis approaches that 
will enable realization of the full potential of the CHEX beamlines to elucidate materials behavior. APS is 
currently devoting significant effort to developing data analysis packages relevant to experimental 
techniques of interest to the CHEX sector. For example: 

• The cohere software package is being developed to provide tools for reconstruction of images from data 
obtained using Bragg Coherent Diffraction Imaging techniques 

• The MIDAS software package is being developed to enable users to non-destructively image the 
microstructure of crystalline materials in 3D 

• Development of the tike toolbox is enabling tomographic reconstruction of 3D objects from 
ptychography data 

Implementations of the above software packages will be of great value to CHEX users. It is anticipated, 
however, that many planned experiments at CHEX will have specific, unique data analysis requirements that 
will require significant refinements/extensions of the above-mentioned packages and/or developments of 
new analysis approaches. Experiments with these unique needs will form the foundation of many of the 
initial science campaigns at CHEX and will serve as a backbone for future science at CHEX. For example, 
several planned early experiments at CHEX will have specific data analysis needs that due to unique 
experimental requirements at CHEX that require additional algorithm and software development, including: 

• High-energy BCDI capabilities for imaging experiments via phase retrieval with high-energy coherent 
focused beams, possibly implemented in cohere or MIDAS 
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• High-q pixel mapping and two-time and higher-order correlation function incorporation into XPCS 
analysis packages requires significant new development, especially for experiments planned at CHEX that 
will target very weakly scattering surface-sensitive regions of q-space 

• Support, in tike, for example, for ptychography in the Bragg geometry, and optimization for studies of the 
epitaxial films of interest to thin film synthesis programs that are planned at CHEX 

• Software for COBRA and DFXM analyses are required as both of these techniques are anticipated to be 
employed in key roles in planned in-situ synthesis and materials processing experiments at CHEX. 

2.2.7 Effort, Funding, and Collaborations 

Network infrastructure to the edge of the CHEX APS-U feature beamline will be provided by APS-U funding. 
All other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-wide data 
management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 FTE per 
year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to the 
CHEX APS-U feature beamline for on-the-fly processing and experiment steering will be provided from APS-U 
funding. Large-scale computing resources are provided by APS Operations funding, ALCF funding, and 
Argonne Laboratory Computing Resource Center (LCRC) funding as described in 1.5. 

To accelerate progress in the development of the advanced data analysis tools to support state-of-the-art 
science at CHEX, a joint scientific staff appointment between the APS and MSD has been proposed, 
requesting 50% funding by APS Operations funds. Through this collaboration, a co-located staff member will 
both adopt the computational data science approaches of currently supported APS software packages to 
meet the specific needs of a broad range of CHEX users and be involved in the planning and execution of 
pioneering coherent imaging and XPCS materials science experiments at CHEX that will be carried out by the 
MSD Synchrotron Studies of Materials Group. Creation of this joint appointment will ensure a healthy data 
analysis ecosystem at CHEX and will simultaneously improve the breadth and impact of the suite of ongoing 
software package design by addressing and eliminating current key blind spots in software packages used for 
analysis of BCDI, XPCS, Bragg geometry ptychography, COBRA, and DFXM data. 

2.3 Coherent Surface-Scattering Imaging (CSSI) APS-U Feature Beamline 
2.3.1 Summary 

The Coherent Surface-Scattering Imaging (CSSI) APS-U feature beamline will take advantage of the MBA 
lattice’s dramatically improved x-ray beam coherence for probing and understanding mesoscopic structures 
and dynamics at surfaces and interfaces. 

In the APS-U era, the CSSI APS-U feature beamline will employ two primary operation modes: Coherent 
Surface Scattering Imaging (CSSI) and Grazing-Incidence X-ray Scattering (GIXS). The latter includes Grazing-
Incidence Wide-Angle X-ray Scattering (GIWAXS), GIWAXS with XPCS, Grazing-Incidence Small-Angle X-ray 
Scattering (GISAXS), and GISAXS with XPCS. In addition, to characterize fast kinetics across a broad range of 
length scales, a fast data acquisition mode will be provided where both GIWAXS and GISAXS detectors are 
operated at high frame rates for short periods. Table 2-4 shows estimated data generation rates at the CSSI 
APS-U feature beamline. The CSSI APS-U feature beamline is anticipated to collect approximately 17 PB raw 
data per year. These data generation estimates form the basis for networking infrastructure, controls, data 
management, and data processing planning. 

Table 2-4 Estimated data generation rates at the CSSI APS-U feature beamline. 
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APS-U Era GIWAXS+ Eiger 9M 33.750 40 1 1.3 13 3.5 38 0.27 
GIWAXS-XPCS+ Eiger 9M 33.750 120,000 10 197.8 25 69.5 5.42 
GISAXS+ Eiger 16M 61.035 40 1 2.4 13 6.3 0.49 
GISAXS-XPCS+ Eiger 16M (4M XPCS mode) 15.26 135,000 10 201.2 25 70.7 5.51 
Fast GIXS ++ Eiger 9M 33.750 30,000 1 988.8 14 38.9 8 0.64 

Eiger 16M 61.035 30,000 1 1788.1 14 70.4 1.16 
CSSI+++ Eiger 16M 61.035 60,000 10 357.6 80 40.2 46 3.80 

* A compression factor of 1.0 represents no compression. 
** Based on 1,440 minutes in one day. Routine GIXS: 2 min data out of 20 min/sample = 10%. Spin GIXS: 5 min data out of 40 min/sample = 
12/5%. 
*** Based on 210 days of beam time per fiscal year. 
+ GIXS: Static simultaneous GIWAXS and GISAXS for 1 dataset, followed by 1 dataset simultaneous GIWAXS/GISAXS surface XPCS, assuming 5 
min alignment. 
++ Fast GIXS: Simultaneous GIWAXS/GISAXS for 5 minutes, assuming 30 minutes required to set up sample. 
+++ CSSI: 20% of each day required for alignment and sample motions during scan. 

2.3.2 Network Architecture and Infrastructure 

Network infrastructure needs will be addressed by the facility plan described in 1.2 

2.3.3 Controls, Data Acquisition, and Detector Integration 

Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, 
Equipment Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 

2.3.4 Data Management, Workflows, and Science Portals 

The APS-U CSSI feature beamline will leverage the data management, workflow, and science portal efforts 
described in 1.4. The APS Data Management System, the facility-wide software and hardware system for 
managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. 

All operation modes of the APS-U CSSI feature beamline will generate data at high rates. The APS Data 
Management System will coordinate data transfer, data backup, preprocessing, and analysis, and provide 
visualization of analysis results to users. 

2.3.5 Computing Infrastructure 

Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources may be provided for on-the-fly data processing and experiment steering. The anticipated high data 
rate and large data volume generated by the CSSI beamline makes processing data likely beyond the 
capability of local workstations. Computing capacity for these data processing tasks and for post-experiment 
processing and analysis will be provided by computing centers, including the ALCF and Argonne’s Laboratory 
Computing Resource Center (LCRC). To develop performant codes suitable for ALCF, a local workstation with 
four GPUs has been commissioned as a test bed. The APS Data Management System and Globus tools will be 
used to integrate these resources. 

2.3.6 Data Reduction and Analysis Software 

Coherent Surface-Scattering Imaging (CSSI) Data Processing 

CSSI is a coherent imaging technique for creating quantitative 3D high resolution images of surface and 
interface structures. The method combines ideas from scanning coherent diffractive imaging (ptychography) 
and computed laminography to create very large diffraction datasets. The process here is done in two steps: 
the datasets for each laminographic rotation angle must fed into ptychographic reconstruction algorithms to 
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create various 2D projection images of the overall 3D sample structure. These 2D projection images will then 
be combined in a computed laminography algorithm to synthesize the final 3D sample image.  

Conventional transmission-based ptychography and laminography algorithms for data inversion must be 
modified to account for CSSI’s geometry and the multiple-scattering effects that are significant at low 
incidence angles. One particular laminography challenge here is due to the very shallow incident angle 
encountered in CSSI, the “missing cone” problem can be quite severe.  Novel variations of iterative 
constrained laminography must be developed using multiple GPUs due to the large 3D sample arrays used in 
CSSI (which are too large for a single GPU to contain). Additionally, we can also vary the incident angle and 
perform further laminography data collection, but this obviously further greatly increases the data volume 
that must be computationally processed. 

For the ptychography step, one must fundamentally change the forward model to account for non-
kinematical scattering. Recent investigations have determined that a multislice Fresnel propagation approach 
is the most accurate model here. One challenge encountered with attempting to simply extend existing 
ptychography inversion algorithms like rPIE is that the number of slices in the multislice approach cannot be 
too large otherwise multiplicative error propagation becomes too dominant. We can somewhat “ignore” the 
multiple-scattering effects with careful selection of appropriate regions of the diffraction measurements, but 
this ultimately amounts to only reconstructing lower resolution 2D projection images; to achieve the best 
possible spatial resolution other ptychographic multislice methods are necessary. 

Another option here is to move beyond this “two-step” ptychography-laminography process and combine 
both into a single unified “one-step” 3D ptychographic phase retrieval problem. In this way, the Fresnel 
multislice model (which inherently represents a complex valued probing wavefield interacting with and 
propagating through a 3D sample volume) will be used in a 3D ptychography algorithm where the 
laminographic rotation is treated as a type of “rotational” diversity which is used as a constraint alongside the 
usual 2D translational diversity. The mathematics of the numerical nonlinear optimization problem have 
already been established and demonstrated on small dimensionality problems to establish proof of principle; 
the work that must be done here is to scale this algorithm up for realistic CSSI problem sizes for computation 
on multiple GPUs. 

Additionally, a Multi-Tiered Iterative Phasing (M-TIP) approach to decompose the larger problem into smaller 
solvable parts is being developed in collaboration with CAMERA. 

GIXS and GIXS-XPCS Data Processing 

Today, GIXS data analysis is performed with the APS developed and supported MATLAB package, GIXSGUI, 
and the CAMERA developed Python-based package, Xi-CAM, for long sequences of time-resolved 
measurements. The integration of GIXSGUI with the APS Data Management System to automate data 
reduction and analysis at the 8-ID-E beamline is underway. High-performance algorithms for near real-time 
GIXS data processing will be implemented. 

At CSSI, the data production rate will be many orders-of-magnitude higher. Multiple-detector collection 
modes will be routine, adding further complexity for data processing. These challenges necessitate large 
volume and multiple-dimension real-time data visualization. The APS Data Management System will 
accommodate increased data volumes. Work will be undertaken to replace the current MATLAB-based tools 
with a new higher-performance and scalable Python-based toolkit. Thin-film structure peak indexing 
capabilities will also be improved. 

For XPCS data reduction and analysis, CSSI will leverage the resources and tools available and being 
developed for the XPCS beamline. 

Table 2-5 Summary CSSI APS-U feature beamline data reduction and processing capabilities and needs. 

Capability Algorithm / Software Requirement Status 
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Data Visualization and 
Preprocessing 

Single image  Done – GIXSGUI – APS Operations 
Multiple images Done – Xi-Cam – CAMERA 
Support for scattering vector q To do – APS Operations 
New Python-based software package To do – APS Operations 

 Near real-time processing To do – APS Operations 
Thin-film Structure Indexing Basic implementation of space groups and 

indexing 
Done – APS Operations developed GIXSGUI, 
CAMERA developed Xi-Cam, and SSRL developed 
a thin-film structural indexing package SIIRkit. 

New scalable Python-based software package 
that integrates surface scattering (Distorted 
Wave Born Approximation) 

To do – APS Operations 

Coherent Surface Scattering 
Imaging (CSSI) 

Image reconstruction algorithms Done – APS Operations & DOE Early Career 
Award developed an algorithm to reconstruct 
CSSI ptychography data 
In Progress – CAMERA is developing an M-TIP 
based CSSI reconstruction algorithm 

Scalable CPU and GPU software In Progress – APS Operations & DOE Early Career 
Award is developing a multi-GPU CSSI 
ptychography reconstruction software package 

Surface XPCS XPCS correlation algorithms and software In Progress – APS Operations work is underway 
as part of effort for the XPCS APS-U feature 
beamline 

 

2.3.7 Effort, Funding, and Collaborations 

Network infrastructure to the edge of the CSSI APS-U feature beamline will be provided by APS-U funding. All 
other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-wide data 
management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 FTE per 
year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to the 
CSSI APS-U feature beamline for on-the-fly processing and experiment steering will be provided from APS-U 
funding. Large-scale computing resources are provided by APS Operations funding, ALCF funding, and 
Argonne Laboratory Computing Resource Center (LCRC) funding as described in 1.5. The APS dedicates 
approximately 1.5 FTE per year for CSSI related algorithm and software development from APS Operations 
funding. 

CAMERA provides effort in support of CSSI algorithm development. 

The following awards support these efforts: 

• Unraveling Mesoscale Spatial-temporal Correlations in Materials Using Coherent X-ray Probes (FY15 
LDRD) 

• Developing Advanced Coherent Surface Scattering Reconstruction Method Incorporating Dynamical 
Scattering Theory (FY17 LDRD) 

• Development of Coherent Surface Scattering Imaging with Nanometer Resolution for Revealing 3D 
Mesoscaled Structures (DOE Early Career Award) 

2.4 High-Energy X-ray Microscope (HEXM) APS-U Feature Beamline 
2.4.1 Summary 

The High-Energy X-ray Microscope (HEXM) APS-U feature beamline is designed to investigate structure and 
evolution within bulk materials, often in extreme environments, with established high-energy x-ray scattering 
techniques and novel coherence-based techniques enabled by the APS-U. 

Table 2-6 shows estimated data generation rates at the HEXM APS-U feature beamline. The HEXM instrument 
will perform near- and far-field, diffraction tomography, and imaging tomography measurements. The HEXM 
APS-U feature beamline is anticipated to collect approximately 20 PB of raw data per year and 5 PB of 
compressed raw data per year in comparison to approximately 4 PB of raw data and approximately 1 PB of 
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compressed raw data collected today at the 1-ID High-Energy Diffraction Microscopy (HEDM) instrument. 
Both uncompressed and compressed data sizes are given because uncompressed data is often required for 
data processing. This represents an approximately 4x increase in data. These data generation estimates form 
the basis for networking infrastructure, controls, data management, and data processing planning. 

Table 2-6 Data generation rates today at the 1-ID High-Energy Diffraction Microscopy (HEDM) instrument (for comparison) and 
estimated data generation rates at the HEXM APS-U feature beamline. 
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Today Near-Field Qimaging Retiga 
4000DC (4MP, 
CCD, 12-bit) 

8 3.3 26 11 4 54 1 0.25 25 62 15 

Far-Field Varex 4343CT 
(8MP, 14-16-bit) 

16 15 237 22 4 63 12 3 25 647 162 

Far-Field GE RT41 (4MP, 
14-bit) 

8 7 56 11 2 63 3 1.5 25 153 76 

Far-Field Hydra 4x GE RT41 
(16MP, 14-bit) 

32 7 224 45 2 63 12 6 15 366 183 

Far-Field Pilatus 2M CdTe 
(20-bit) 

7 250 1,771 10 4 63 92 23 15 2,896 724 

Diffraction 
Tomography 

GE RT41 (4MP, 
14-bit) 

8 2 16 281 2 72 1 0.5 5 10 5 

Diffraction 
Tomography 

Hydra 4x GE RT41 
(16MP, 14-bit) 

32 2 64 1,125 2 72 4 2 5 40 20 

Diffraction 
Tomography 

GE RT41 (4MP, 
14-bit) 

8 7 56 2,250 2 72 3 1.66 5 35 17 

Diffraction 
Tomography 

Hydra 4x GE RT41 
(16MP, 14-bit) 

32 7 224 9,000 2 72 13 6.5 5 140 70 

Imaging 
Tomography 

PointGrey CMOS 
(2.3MP, 12-bit) 

4 5 22 15 1 54 1 1 20 41 41 

APS-U Era Near-Field FLIR Oryx (5MP, 
12-bit) 

10 40 383 13 4 54 17 4 25 894 223 

Far-Field Dectris Pilatus 
6M (20-bit) 

18 125 2,226 25 4 63 116 29 40 9,706 2,426 

Diffraction 
Tomography 

Dectris Pilatus 
2M CdTe (20-bit) 

7 50 354 249 4 72 21 5 10 441 110 

Diffraction 
Tomography 

Dectris Eiger 16M 
CdTe (12-bit) 

52 50 2,595 1,825 4 72 154 39 10 3,233 808 

Diffraction 
Tomography 

Sydor SMM-PAD 
CdTe (22-bit) 

0.75 50 38 26.37 4 72 2.22 0.56 10 47 12 

Diffraction 
Tomography 

Dectris Pilatus 
2M CdTe (20-bit) 

7 250 1,771 1,993 4 72 105 26 5 1,103 276 

Diffraction 
Tomography 

Dectris Eiger 16M 
CdTe (12-bit) 

52 133 6,902 14,596 4 72 410 102 5 4,300 1,075 

Diffraction 
Tomography 

Sydor SMM-PAD 
CdTe (22-bit) 

0.75 1,000 750 211 4 72 45 11 5 467 117 

Imaging 
Tomography 

FLIR Oryx 5MP 
(12-bit) 

10 10 96 34 1 54 4 4 15 134 134 

Fast Imaging 
Tomography 

FLIR Oryx 5MP 
(12-bit) 

10 100 956 34 1 12 10 10 5 99 99 

* A compression factor of 1.0 represents no compression. 
** Based on 1,440 minutes in one day. Utilization reflects the overhead associated with detector duty cycles and motion, as well as related setup 
time for alignment, calibration, sample changes and sample alignment, in situ environment modification, etc. 
*** Based on 210 days of beam time per fiscal year. 
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2.4.2 Network Architecture and Infrastructure 

Network infrastructure needs will be addressed by the facility plan described in 1.2. 

2.4.3 Controls, Data Acquisition, and Detector Integration 

Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, 
Equipment Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 

2.4.4 Data Management, Workflows, and Science Portals 

The HEXM APS-U feature beamline will leverage the data management, workflow, and science portal efforts 
described in 1.4. The APS Data Management System, the facility-wide software and hardware system for 
managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. For the HEXM APS-U feature beamline, workflows will provide a pipeline to automatically 
run data processing software for near- and far-field, diffraction tomography, and imaging tomography data 
reconstructions, and to view results. 

2.4.5 Computing Infrastructure 

Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources will be provided for on-the-fly data processing and experiment steering. Computing capacity for 
larger data processing tasks and for post-experiment processing and analysis will be provided by computing 
centers, including the ALCF and Argonne’s Laboratory Computing Resource Center (LCRC). The APS Data 
Management System and Globus tools will be used to seamlessly integrate these resources. 

2.4.6 Data Reduction and Analysis Software 

The HEXM APS-U feature beamline requires data processing algorithms and software for near- and far-field, 
diffraction tomography, and imaging tomography measurements. Descriptions of current efforts and plans in 
each of these areas follow. Table 2-7 summarizes capabilities for each of these modes, respectively. 

Near- and Far-Field Diffraction Microscopy 

The APS develops and supports the Microstructural Imaging using Diffraction Analysis Software (MIDAS) 
software package for near- and far-field diffraction microscopy data processing. The software is available as 
an open-source package (https://github.com/marinerhemant/MIDAS). MIDAS is written in C and uses Python 
for scripting. Distributed-memory parallelization is achieved using the SWIFT parallel execution framework. 
Time-critical parts of the code have been ported to run on GPUs with CUDA. MIDAS has been demonstrated 
to scale to tens-of-thousands of cores on supercomputers at the ALCF and at the National Energy Research 
Scientific Computing Center (NERSC). An average size data set today is typically processed within a few 
minutes. The APS will continue to develop MIDAS by enabling the processing of data taken with 3D scans, 
implementing intensity fitting, closely integrating with tomographic reconstruction algorithms and software, 
and scaling and optimizing performance to support APS-U Era data rates and sizes. 

In addition to APS developed software, IceNine supports processing near-field diffraction data, and Fable and 
HEXRD support far-field data processing. 

Diffraction Tomography 

APS staff in the Materials Physics & Engineering group have developed prototype software in MATLAB to 
reconstruct diffraction tomography data. This prototype MATLAB software serves as a proof-of-principle for 
algorithm quality. The APS will develop production ready, higher-performance software for diffraction 
tomography reconstructions, for APS-U Era data. Algorithmic work will continue to integrate more advanced 
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algorithms uses for imaging tomography, such as Algebraic Reconstruction Technique (ART) based 
reconstruction methods. 

As part of the High Pressure Material Characterization in 3-Dimensions Using X-ray Diffraction Contrast 
Computed Tomography LDRD, modules have been added in MIDAS for rapid and automated analysis of 
diffraction tomography data. These include rapid correction and transformation of diffraction data, 
extraction of peak properties and tomographic inversion. 

Imaging Tomography 

The APS develops and supports the TomoPy tomographic reconstruction library. TomoPy is available as an 
open-source library (https://github.com/tomopy/tomopy). TomoPy is primarily written in Python and has 
integrated MPI-based and GPU-based routines for performance. Reconstruction algorithms in TomoPy have 
been scaled to run on supercomputers at the ALCF, the National Energy Research Scientific Computing Center 
(NERSC), and the Oak Ridge Leadership Computing Facility. In the APS-U Era, close integration of tomography 
reconstruction algorithms with MIDAS will improve performance and add convenience for users. 

AI/ML Developments for the HEXM APS-U Feature Beamline 

Researchers at the APS and from Argonne’s DSL division have developed a deep neural network called 
BraggNN. This method enables extraction of precise Bragg peak locations from far-field High-Energy 
Diffraction Microscopy (HEDM) data. The model runs more than 200 times faster than the conventional 
pseudo-Voigt profiling to locate Bragg peak position (see Figure 2-2). 

The APS is researching Point Focused High-Energy Diffraction Microscopy (PF-HEDM) as a technique that 
pushes the limits of HEDM techniques to smaller grains to obtain sub-granular information. Preliminary 
algorithms developed using tomography-like reconstructions are promising. Researchers are developing 
inversion tools using AI/ML to improve the quality of reconstructions and obtain higher-quality answers. 
These developments may provide an alternative to conventional diffraction tomography methods. The 
Developing Point-Focus High-Energy Diffraction Microscopy to Reveal Battery Material Degradation LDRD has 
been funded in FY23 for development of the PF-HEDM technique and leverage the beam capabilities of the 
APS-U era. 

Table 2-7 Summary of near- and far field-diffraction, diffraction tomography, and imaging tomography data processing needs 
and status for the HEXM APS-U feature beamline. 

Science Driver Capability Algorithm / Software Requirement Status 
Smaller grains 
Greater dispersity 
Higher deformation 

Near-Field Diffraction Scalable distributed-memory CPU and GPU 
implementation 

Done – APS Operations – MIDAS 

Intensity fitting To do – APS Operations 
Smaller grains 
Greater dispersity 
Higher deformation 

Far-Field Diffraction Scalable distributed-memory CPU and GPU 
implementation 

Done – APS Operations – MIDAS 

Multi-panel support Done – APS Operations – MIDAS 
3D scanning support To do – APS Operations 

Nano-grains 
Amorphous materials 

Diffraction (Scattering) 
Tomography 

Prototype implementation Done – APS Operations - MATLAB 
Scalable distributed-memory CPU and GPU 
implementation 

Done – LDRD – MIDAS 

Integrate more advanced tomographic 
reconstruction algorithms, e.g., ART 

To do – If needed – APS Operations 

Faster processes (sub-
second) 

Imaging Tomography Scalable distributed-memory CPU and GPU 
implementation 

Done – APS Operations – TomoPy 

Integration with MIDAS To do – APS Operations 

 

2.4.7 Effort, Funding, and Collaborations 

Network infrastructure to the edge of the HEXM APS-U feature beamline will be provided by APS-U funding. 
All other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-wide data 
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management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 FTE per 
year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to the 
HEXM APS-U feature beamline for on-the-fly processing and experiment steering will be provided from APS-U 
funding. Large-scale computing resources are provided by APS Operations funding, ALCF funding, and 
Argonne Laboratory Computing Resource Center (LCRC) funding as described in 1.5. The APS dedicates 
approximately 1 FTE per year for HEDM software development and approximately 1 FTE per year for TomoPy 
development from APS Operations funding. 

In addition to APS Operations funding, the APS benefits from long-term collaborations with the Air Force 
Research Laboratory (AFRL), Carnegie Mellon University (CMU), in particular an NSF-MRI grant to CMU 
supported the development of a new APS High-Throughput High-Energy Diffraction Microscopy (HEDM) 
beamline at 6-ID-D, and past and future industrial partnerships with GE and Pratt & Whitney. 

AI/ML BraggNN work is funded by Information from Sensor to Data Center (PI: Jana Thayer, SLAC National 
Accelerator Laboratory, LAB 20-2261). 

The following LDRD funding was awarded to support these efforts: 

• Finding Critical Processes of Deformation in Structural Materials with Artificial Intelligence (FY19) 
• AI-steer: AI-driven Online Steering of Light Source Experiments (FY20) 
• High Pressure Material Characterization in 3-Dimensions Using X-ray Diffraction Contrast Computed 

Tomography (FY21) 
• Developing Point-Focus High-Energy Diffraction Microscopy to Reveal Battery Material Degradation 

(FY23) 

 
Figure 2-2 BraggNN: Grain center positions in microns determined by three methods, with a full high-resolution grain map from 
Near-Field HEDM superimposed in background. The Near-Field HEDM results provide the highest accuracy against which the 
grain-averaged Far-Field HEDM results can be compared. On average BraggNN provided slightly smaller position error than the 
conventional method. 
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2.5 In Situ Nanoprobe (ISN) APS-U Feature Beamline 
2.5.1 Summary 

The In Situ Nanoprobe (ISN) APS-U feature beamline is designed to study advanced materials during 
fabrication and operation. Its large working distance enables broad in situ environments, including heating, 
cooling, flow of process gases and fluids, and application of electric fields. The ISN beamline takes advantage 
of the upgraded source and is ideally suited for applications requiring diffraction-limited focusing. The ISN 
instrument will be a scanning nanoprobe, with x-ray fluorescence (XRF) detection and ptychography as major 
contrast modes. A secondary area detector will collect diffracted x-rays and provide some capability to 
identify local crystalline states. 

Table 2-8 shows estimated data generation rates at the ISN APS-U feature beamline, and current data rates 
at the 2-ID-D ptychography, 2-ID-E XRF, and Bio Nano-Probe (BNP) XRF instruments for comparison. The ISN 
APS-U feature beamline is anticipated to collect approximately 10 PB of raw data per year and 1 PB of 
compressed raw data per year, in comparison to approximately 730 TB of raw data and approximately 73 TB 
of compressed raw data collected today across the 2-ID-D ptychography, 2-ID-E XRF, and Bio Nano-Probe 
(BNP) XRF instruments. Both uncompressed and compressed data sizes are given because uncompressed 
data is often required for data processing. This represents a nearly 15x increase in data. These data 
generation estimates form the basis for networking infrastructure, controls, data management, and data 
processing planning. 

Table 2-8 Data generation rates today at the 2-ID-D ptychography and diffraction, 2-ID-E XRF, and Bio Nano-Probe (BNP) XRF 
instruments (for comparison) and estimated data generation rates at the ISN APS-U feature beamline. 
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Today 2-ID-D 
Ptychography 

Dectris Eiger 
500K 

1.010 100 100 40 10 80 6,912 691 50 726 72.6 

2-ID-E XRF Vortex ME4 0.008 20 0.15 1.91 5 100 13.18 2.64 80 2.16 0.43 
BNP XRF Vortex ME4 0.008 20 0.15 0.69 15 100 13.18 0.88 80 2.16 0.14 

APS-U Era ISN XRF 2 X Vortex 
ME7 

0.14843
75 

1,000 144.95 579.83 5 80 1,956 116 80 329 65 

ISN 
Ptychography 

Dectris Eiger 
1M 

2.092 3,000 5,000 204,322 10 35 185,362 18,536 20 7,603 760 

ISN Diffraction Dectris Eiger 
1M 

2.092 3,000 5,000 40.86 10 10 52,960 5,296 20 3,528 326 

* A compression factor of 1.0 represents no compression. 
** Based on 1,440 minutes in one day. 
*** Based on 210 days of beam time per fiscal year. 
 

2.5.2 Network Architecture and Infrastructure 

Network infrastructure needs will be addressed by the facility plan described in 1.2. 

2.5.3 Controls, Data Acquisition, and Detector Integration 

Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, 
Equipment Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 
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2.5.4 Data Management, Workflows, and Science Portals 

The ISN APS-U feature beamline will leverage the data management, workflow, and science portal efforts 
described in 1.4. The APS Data Management System, the facility-wide software and hardware system for 
managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. For the ISN APS-U feature beamline, workflows will provide a pipeline to automatically run 
tools to remove artifacts from data, reconstruct the XRF, Ptychography, and Diffraction data set, and view 
results. 

2.5.5 Computing Infrastructure 

Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources will be provided for on-the-fly data processing and experiment steering. Computing capacity for 
larger data processing tasks and for post-experiment processing and analysis will be provided by computing 
centers, including the ALCF and Argonne’s Laboratory Computing Resource Center (LCRC). The APS Data 
Management System and Globus tools will be used to seamlessly integrate these resources. 

2.5.6 Data Reduction and Analysis Software 

The ISN APS-U feature beamline requires three modes of data processing: elemental fitting for XRF 
microscopy data, ptychography data reconstruction, and space-mapping for diffraction data. Descriptions of 
current efforts and plans in each of these areas follow. Table 2-9, Table 2-10, and Table 2-11 summarize 
capabilities for each of these three modes, respectively. Many of the data processing requirements for the 
ISN APS-U feature beamline are like those of the PtychoProbe APS-U feature beamline described in 2.7. 

Elemental Fitting for XRF Microscopy Data 

The APS develops and supports the XRF-Maps and uProbeX software packages for XRF microscopy data 
processing and visualization (see Figure 2-3). This software is available as open-source packages 
(https://github.com/AdvancedPhotonSource/XRF-Maps and 
https://github.com/AdvancedPhotonSource/uProbeX). The XRF-Maps package performs elemental map 
fitting and the uProbeX application is a GUI for visualizing XRF-Maps results. XRF-Maps and uProbeX are both 
written in C++. XRF-Maps supports multi-core data processing in a shared-memory CPU environment and has 
a Python wrapper which allows all the functionality to be called from a Python environment. 

APS-U enhancements will allow for larger scan areas resulting in larger datasets. These larger datasets may 
not be able to fit in system memory. To accommodate this XRF-Maps implements a streaming architecture 
that allows processing a dataset spectra by spectra without having to load the entire dataset. Only a limited 
number of spectra are loaded based on memory limits, processed, and saved to an HDF5 file until the whole 
dataset is processed. As data sizes increase, it may be become necessary to develop GPU-based and 
distributed-memory CPU- and GPU-based elemental fitting software. 

The higher intensity x-ray beam generated by the APS-U storage ring necessitates the use of self-absorption 
correction when generating elemental maps. APS researchers and instrument staff are working on 
developing new self-absorption correction algorithms in collaboration with staff at the National Synchrotron 
Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL). These algorithms are being implemented 
and tested in the XRF-Maps software. 

Table 2-9 Summary of XRF microscopy elemental mapping data processing needs and status for the ISN APS-U feature beamline. 

Capability Algorithm / Software Requirement Status 
XRF Elemental Map Fitting Algorithms for elemental map fitting Done 

Multi-core shared-memory CPU implementation Done – APS Operations 
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Streaming data processing / operate on out-of-
core data 

Done – APS Operations 

Distributed-memory CPU and GPU 
implementation 

To do – If required 

XRF Self-Absorption Correction Self-absorption correction algorithm 
development 

In Progress – APS Operations and collaborations 
with NSLS-II 

Self-absorption correction implementation in 
XRF-Maps 

In Progress – APS Operations 

 

Ptychography Reconstruction 

Ptychography has emerged as a powerful technique at synchrotron light sources. It will play a central role in 
answering many emerging scientific questions that the upgraded APS will help solve. Advanced ptychographic 
reconstruction algorithms and software are critical to take advantage of this new and innovative technique. 

Multiple ptychographic reconstruction algorithms are required to achieve reasonable reconstruction quality 
to best analyze ptychography data collected for different domains and of varying sample characteristics. The 
APS has implemented the extended Ptychographic Iterative Engine (ePIE), regularized Ptychographic Iterative 
Engine (rPIE), conjugate gradient, Difference Map (DM), and iterative Least-SQuares solver for generalized 
Maximum-Likelihood (LSQ-ML) methods. Algorithms to help improve reconstruction quality, such as position 
and probe variation correction, and affine position regularization, are being developed and implemented. 

Due to the computationally complex nature of ptychographic reconstruction algorithms and due to the 
anticipated increase in data rates and sizes in the APS-U Era, distributed high-performance implementations 
of ptychography reconstruction software are required. The APS with collaborators in Argonne’s Mathematics 
& Computer Science (MCS) division developed PtychoLib, a distributed-memory GPU implementation of the 
extended Ptychographic Iterative Engine (ePIE) in 2014 and integrated Difference Map (DM) algorithms in 
2018. PtychoLib was written in C++ and uses MPI and CUDA. The software was shown to scale on up to 256 
GPUs on the ALCF’s Cooley GPU cluster. This software has been supported and extended since then and has 
been the main tool used for high-performance ptychography reconstructions at APS beamlines. PtychoLib has 
been the main tool used for high-performance ptychography reconstructions at APS beamlines for the past 
decade. PtychoPy (https://github.com/kyuepublic/ptychopy) was developed as a Python wrapper and GUI for 
PtychoLib. Since then, the APS has consolidated ptychography development into the tike 
(https://github.com/AdvancedPhotonSource/tike) toolkit in order to make installing and developing new 
ptychography features and algorithms easier. This toolkit is written in Python and uses CuPy as the 
underlying GPU framework. All the reconstruction features of PtychoLib have been reimplemented in the tike 
toolkit including MPI and thread-based parallelism. Ptychodus, is a new pyQT-based GUI/workflow manager 
for ptychography reconstruction workflows has also been created in order to provide live reconstruction 
visualization and analysis. 

Table 2-10 Summary of ptychography reconstruction needs and status for the ISN APS-U feature beamline. 

Capability Algorithm / Software Requirement Status 
Conventional Reconstruction GPU implementation of extended Ptychographic Iterative 

Engine (ePIE) method 
Done – APS Operations 

GPU implementation of Difference Map (DM) method Done – APS Operations 
GPU implementation of the iterative Least-SQuares solver for 
generalized Maximum-Likelihood (LSQ-ML) method 

Done – APS Operations 

Improved Reconstruction Quality Position correction In Progress – Implemented in tike 
and currently being tested – APS 
Operations 

Probe variation correction In Progress – Implemented in tike 
and currently being tested – APS 
Operations 

Multi-probe retrieval In Progress – Implemented in tike 
and currently being tested – APS 
Operations 
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Mini-batches In Progress – Implemented and 
currently being tested – APS 
Operations 

Multi-wavelength In Progress – APS Operations 
Arbitrary fly-scan To do – APS Operations 
Multi-slice ptychography To do – APS Operations 
Integration with CNN denoising and priors (regularization) In Progress – APS Operations 
Affine position regularization In Progress – APS Operations 

High-Performance 
Implementations 

Scalable distributed-memory GPU implementation of 
extended Ptychographic Iterative Engine (ePIE) method 

Done – APS Operations and ASCR 
funding 

Scalable distributed-memory GPU implementation of 
Difference Map (DM) method 

Done – APS Operations and ASCR 
funding 

Scalable distributed-memory GPU implementation of 
iterative least-squares solver for generalized maximum-
likelihood (LSQ-ML) method 

Done – APS Operations 

 Ptychographic reconstruction using AI/ML In Progress – APS Operations & 
LDRD 

 

APS-U Era data rates are expected to be so large that traditional algorithms may not be able to keep up with 
acquired data. These data rates are so large, and the scientific problems that APS-U Era capabilities can 
enable are so great, that porting and scaling current models and algorithmic approaches may not realize the 
full promise of next-generation light sources. Using AI techniques, APS researchers have developed an 
approach to improve the performance of ptychographic reconstructions. A deep neural network model is 
trained to predict and reconstruct ptychographic x-ray data. This approach, PytchoNN, can then perform 
reconstructions up to 300 times faster than conventional iterative approaches and uses up to 5 times less 
data, speeding up both data acquisition and data reconstruction (see Figure 2-4). 

Space-Mapping for Diffraction Data 

The APS develops and supports the RSMap3D tool for diffraction space-mapping (see Figure 2-5). This 
software is available as an open-source package (https://github.com/AdvancedPhotonSource/rsMap3D). The 
tool allows users to examine the volume of collected data and select portions on which to apply 
transformations that convert detector pixel locations from diffractometer geometry to reciprocal-space units, 
and then map pixel data onto a 3D reciprocal-space grid. This application uses diffractometer angles, the 
energy of the scan and sample to detector distances to calculate either q-vector component values or HKL 
values. These values are calculated for each detector pixel and scan position. The calculated q/HKL value and 
pixel intensity is then binned in a 3D grid based on the selected q/HKL values. The core routines utilize 
OpenMP to parallelize operations across multiple cores on a shared-memory CPU. Data too big to fit entirely 
into memory at one time are processed in smaller chunks and reassembled to form the final output volume, 
allowing users to process arbitrarily large input datasets. It will be straightforward to extend this application 
to operate in a distributed-memory CPU environment if needed. These parallel and out-of-core 
computational techniques will be critical to handle larger data rates expected in the APS-U Era. 

Table 2-11 Summary of diffraction space-mapping data processing needs and status for the ISN APS-U feature beamline. 

Capability Algorithm / Software Requirement Status 
RSM for Diffraction Data Multi-core shared-memory CPU implementation Done – APS Operations in collaboration with DESY 

Operate on out-of-core data Done – APS Operations 
Distributed-memory CPU and GPU implementation To do – If required 

Spectroscopy Tools 

An additional need for ISN is a spectroscopy tool. The relevant data acquisition mode is 2D or (possibly 3D) 
spatial scans with a full spectrum XANES spectrum at each pixel. Software should display spectra at each 
pixel. Related is a tool that allows PCA analysis of the data within an interactive feature that that allows 
display of the local spectra for each major component. For example, PCA would identify uniform/crystalline 
areas of a multicrystalline sample and grain boundaries, and extraction of the spectra for the relevant 
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principal components would enable direct visualization of the spectral differences between 
uniform/crystalline areas and grain boundaries. 

2.5.7 Effort, Funding, and Collaborations 

Network infrastructure to the edge of the ISN APS-U feature beamline will be provided by APS-U funding. All 
other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-wide data 
management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 FTE per 
year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to the ISN 
APS-U feature beamline for on-the-fly processing and experiment steering will be provided from APS-U 
funding. Large-scale computing resources are provided by APS Operations funding, ALCF funding, and 
Argonne Laboratory Computing Resource Center (LCRC) funding as described in 1.5. The APS dedicates 
approximately 1 FTE per year for XRF elemental mapping and diffraction space-mapping software 
development from APS Operations funding. 

The following LDRD funding was awarded to support these efforts: 

• Novel Capabilities for Ultra-fast and Ultra-low-dose 3D Scanning Hard X-ray Microscopy (FY18) 
• Enabling Automatic Learning of Atmospheric Particles through APS-U (FY19) 
• Learning and Differentiating: Using Artificial Intelligence to Image Beyond the X-ray Depth of Focus Limit 

(FY19) 
• Intelligent Ptychography Scan via Diffraction-Based Machine Learning (FY20) 
• AutoPtycho: Autonomous, Sparse-sampled Ptychographic Imaging (FY21) 
• AI Accelerator for 3D X-ray Phase Retrieval with Automatic Differentiation (FY21) 

 
Figure 2-3 Left: uProbeX displaying integrated spectra from a dataset in blue, background subtraction in green, modeled spectra 
in orange, and elemental lines for element S. Right: uProbeX displaying Calcium quantities of an analyzed fish fossil. Elemental 
maps are generated with XRF-Maps. 

 
Figure 2-4 Architecture of PtychoNN, a deep convolutional neural network that can predict real-space amplitude and phase from 
input diffraction data alone. 
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Figure 2-5 Visualization of a dataset from a pixel from a Silicon analyzer crystal processed with RSMap3D. This data shows a 
combination of diffraction (bright spots) and thermal diffuse scattering (broad lines connecting diffraction spots).  This data was 
taken on the High Energy Resolution Inelastic X-Ray Spectrometer (HERIX) at APS Sector 30. 

2.6 Polarization Modulation Spectroscopy (Polar) APS-U Feature Beamline 

2.6.1 Summary 

The Polarization Modulation Spectroscopy (Polar) APS-U feature beamline will use the polarization 
dependence of resonant absorption and scattering to study emergent quantum states in novel electronic and 
magnetic materials. Emphasis is placed on tuning/controlling competing ground states and electronic 
inhomogeneity with a combination of extreme high-pressures, low temperature, and high magnetic fields. 
Brilliant beams with tunable circular-and linear-polarization states will allow reaching extreme pressures as 
well as mapping electronic inhomogeneity in both real and reciprocal space. 

In the APS-U era, the Polar APS-U feature beamline will continue to support techniques relying on x-ray 
polarization control but will augment its capabilities by leveraging the enhanced brilliance and coherence of 
APS-U beams, coupled with extreme sample environments. A future installation of a pair of polarizing 
undulators that leverage use of round insertion device vacuum chambers made possible in APS-U will provide 
exquisite polarization control (circular, elliptical, arbitrary linear) and extend the energy range of polarization 
modulated spectroscopies to high energy resonances up to 27 keV. Dichroic techniques currently supported 
include X-ray Magnetic Circular Dichroism (XMCD), X-ray linear dichroism (XLD), and Resonant Magnetic 
Scattering/Reflectivity. New techniques in Polar that require software development, and entail significant 
increases in data volumes, are: (1) Dichroic Ptychography, including fly scanning/interferometry and 
tomographic modes, for imaging of electronic/magnetic domains in reciprocal space with ~ 10 nm resolution; 
(2) Scanning dichroic x-ray absorption imaging, including fly scanning/interferometry and tomographic 
modes, for imaging of electronic/magnetic domains in real space with ~ 200 nm resolution. New sample 
environments such as a 3-axis 9-1-1 T magnet also enable expansion of dichroic technique modalities to 
include X-ray Magnetic Linear Dichroism (XMLD) and Dichroic emission spectroscopy (RXES-MCD). The new 
dichroic imaging techniques are implemented in combination with extreme conditions of ultra-high pressure, 
low temperature, and high magnetic field. The data volume estimates for these techniques form the basis for 
networking infrastructure, controls, data management, and data processing planning. 

Table 2-12 shows the estimated data generation rates at the Polar APS-U feature beamline. The Polar APS-U 
feature beamline is anticipated to collect approximately 84 TB of compressed raw data per year. These data 
generation estimates form the basis for networking infrastructure, controls, data management, and data 
processing planning. 

Table 2-12 Estimated data generation rates at the Polar APS-U feature beamline. 
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Today 4-ID-D XAS/XMCD/XLD  Si Drift Multi-Element, 
photodiodes 

2.73 0.0014 547 90 15 3  

4-ID-D Dichroic Resonant 
Scattering/Reflectivity 

Scintilator (NaI) / 
Avalanche Photodiode 

0.38 7.6E-7 0.3815 90 10 0.0012 

APS-U Era 4-ID-G Dichroic Ptychography 
imaging 2D/3D modes (fly scans, 
interferometry) 

Dectris EIGER2 X 1M 4.16 208 21,000 90 20 76,000 

4-ID-G Dichroic Resonant Scattering 
imaging (200 nm) 

Dectris EIGER 2 X 1M 4.16 41.6 4,000 90 10 7,500 

4-ID-G Dichroic Absorption 
Tomography (200 nm) 

Photodiodes 0.38 7.6E-7 0.3815 90 10 0.0012 

4-ID-H Dichroic Absorption XAS/ 
XMCD/XMLD (mapping 300 nm, 
high-pressure 7 Mbar) 

Si Drift 7-Element 
Photodiodes 

1.302 0.33 1172 70 25 51 

4-ID-H Dichroic X-ray emission 
(RXES-MCD)  

Lambda 250k  1 1 20 90 10 1 

* Based on 1,440 minutes in one day. 
** Based on 210 days of beam time per fiscal year. 

2.6.2 Network Architecture and Infrastructure 

Network infrastructure needs will be addressed by the facility plan described in 1.2. 

2.6.3 Controls, Data Acquisition, and Detector Integration 

Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, 
Equipment Specification Documents (ESDs), and Instrument Specification Documents (ISDs). Dichroic 
Ptychography in 2D and 3D (tomographic) modes will make use of interferometry to inform on actual sample 
and beam position during fly scans, information to be used for image alignment before reconstructions. 
Integration of interferometry with beamline controls will be done with FPGA-based softGlueZynq. 

2.6.4 Data Management, Workflows, and Science Portals 

The APS-U Polar feature beamline will leverage the data management, workflow, and science portal efforts 
described in 1.4. The APS Data Management System, the facility-wide software and hardware system for 
managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. For the Polar APS-U feature beamline, workflows will provide a pipeline to automatically run 
analysis and reconstruction tools. 

2.6.5 Computing Infrastructure 

Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources will be provided for on-the-fly data processing and experiment steering. Under the scope of LDRD 
project 2022-0008, Development of 3D Dichroic Ptychography at APS, a 2 x A100 80GB GPU server was 
purchased in FY22 to provide a dedicated platform for reconstruction of ptychography data at 4-ID-D. 
Computing capacity for larger data processing tasks and for post-experiment processing and analysis will be 
provided by computing centers, including the ALCF and Argonne’s Laboratory Computing Resource Center 
(LCRC). The APS Data Management System and Globus tools will be used to seamlessly integrate these 
resources. 
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2.6.6 Data Reduction and Analysis Software 

The processing and analysis of dichroic data currently collected at 4-ID-D leverages a variety of in-house 
scripting tools and open-source software, such as GenX code for Dichroic Resonant Reflectivity data 
(https://aglavic.github.io/genx), and polartools for python-based processing of dichroic and resonant 
diffraction data (https://github.com/APS-4ID-POLAR/polartools). 

Reconstruction algorithms for processing Dichroic Ptychography data, including tomographic mode, are 
currently being developed with funding from LDRD 2022-0008, Development of 3D Dichroic Ptychography at 
APS. The APS will leverage the tike ptychography toolkit as a framework for implementing algorithms in this 
area. If required, the APS will develop scalable distributed-memory CPU and GPU implementations for 
processing the large volumes of Dichroic Ptychography data generated by the Polar APS-U feature beamline, 
especially for fly-scan implementations.  

Reconstruction algorithms for scanning Dichroic Tomography are not yet defined. The APS is currently 
performing preliminary R&D in this area under LDRD 2022-0008. The APS will leverage the TomoPy toolkit as 
a framework for implementing algorithms in this area. If required, the APS will develop scalable distributed-
memory CPU and GPU implementations for processing the large volumes of Tomographic CDI data generated 
by the Polar APS-U feature beamline. 

Table 2-13 Summary of data reduction needs, approaches, and status for the Polar APS-U feature beamline. 

Capability Algorithm / Software Requirement Status 
Dichroic Resonant 
Absorption and 
Scattering 

Algorithm development Done – APS Operations 
Single CPU software implementation Done – APS Operations – polartools  

Open Source - GenX, etc 
Scalable distributed-memory CPU and GPU implementation In progress – LDRD, APS operations 

Dichroic Ptychography Algorithm development In progress – LDRD  
Single CPU software implementation In progress – LDRD  
Scalable distributed-memory CPU and GPU implementation In progress – LDRD, APS operations 

Dichroic Tomography Algorithm development In progress – APS Operations 
Single CPU software implementation In progress – APS Operations – Leverage 

TomoPy tools for tomographic reconstruction 
Scalable distributed-memory CPU and GPU implementation In progress – LDRD, APS operations 

 

2.6.7 Effort, Funding, and Collaborations 

Network infrastructure to the edge of the Polar APS-U feature beamline will be provided by APS-U funding. 
All other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-wide data 
management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 FTE per 
year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to the 
Polar APS-U feature beamline for on-the-fly processing and experiment steering will be provided from APS-U 
funding. Large-scale computing resources are provided by APS Operations funding, ALCF funding, and 
Argonne Laboratory Computing Resource Center (LCRC) funding as described in 1.5. LDRD 2022-0008, 
Development of 3D Dichroic Ptychography at APS is providing effort to develop reconstruction algorithms for 
dichroic ptychography data (2D and 3D), and resources to augment local computing infrastructure. 

The following LDRD funding was awarded to support these efforts: 

• Development of 3D Dichroic Ptychography at APS (FY22) 

2.7 PtychoProbe APS-U Feature Beamline 
2.7.1 Summary 

The PtychoProbe APS-U feature beamline (Ptychography + Nanoprobe) is designed to realize the highest 
possible spatial resolution X-ray microscopy both for structural and chemical information. The 
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unprecedented brightness of the APS MBA lattice will be exploited to produce a nm-beam of focused hard X-
rays to achieve the highest possible sensitivity to trace elements, and ptychography will be used to further 
improve the spatial resolution for structural components to its ultimate limit. The proposed beamline will 
enable high resolution two- and three-dimensional imaging of thick objects and bridge the resolution gap 
between contemporary X-ray and electron microscopy. Extending X-ray microscopy into the nanoscale is 
crucial for understanding complex hierarchical systems on length scales from atomic up to meso and 
macroscales, and time scales down to the microsecond level, and is applicable to scientific questions ranging 
from biology to earth and environmental materials science, to electrochemistry, catalysis and corrosion, and 
beyond. 

Table 2-14 shows estimated data generation rates at the PtychoProbe APS-U feature beamline. The 
PtychoProbe APS-U feature beamline is anticipated to collect approximately 48.8 PB of raw data per year and 
4.8 PB of compressed raw data per year, in comparison to approximately 730 TB of raw data and 
approximately 73 TB of compressed raw data collected today across the 2-ID-D ptychography, 2-ID-E XRF, and 
Bio Nano-Probe (BNP) XRF instruments. Both uncompressed and compressed data sizes are given because 
uncompressed data is often required for data processing. This represents an approximately 100x increase in 
data. These data generation estimates form the basis for networking infrastructure, controls, data 
management, and data processing planning. 

Table 2-14 Data generation rates today at the 2-ID-D ptychography, 2-ID-E XRF, and Bio Nano-Probe (BNP) XRF instruments (for 
comparison) and estimated data generation rates at the PtychoProbe APS-U feature beamline. 
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Today 2-ID-D 
Ptychography 

Dectris 
Eiger 
500K 

1.010 100 100 40 10 80 6,912 691 50 726 72.6 

2-ID-E XRF Vortex 
ME4 

0.008 20 0.15 1.91 5 100 13.18 2.64 80 2.16 0.43 

BNP XRF Vortex 
ME4 

0.008 20 0.15 0.69 15 100 13.18 0.88 80 2.16 0.14 

APS-U 
Era 

PtychoProbe 
XRF 

Vortex 
ME7 

0.054 1,000 53 214 5 80 631 42.7 80 106 21 

PtychoProbe 
Ptychography – 
Slow 

Dectris 
Eiger 2XE 
1.5M 

3 2,000 6,000 120 10 80 414,720 41,472 40 34,836 3,483.6 

PtychoProbe 
Ptychography – 
Fast 

TBD – 
Small fast 
detector 
(200x200)  

0.08 30,000 2,400 3.2 10 80 165,888 16,589 40 13,934 1,393.4 

* A compression factor of 1.0 represents no compression. 
** Based on 1,440 minutes in one day. 
*** Based on 210 days of beam time per fiscal year. 

2.7.2 Network Architecture and Infrastructure 

Network infrastructure needs will be addressed by the facility plan described in 1.2. 

2.7.3 Controls, Data Acquisition, and Detector Integration 

Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, 
Equipment Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 
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2.7.4 Data Management, Workflows, and Science Portals 

The PtychoProbe APS-U feature beamline will leverage the data management, workflow, and science portal 
efforts described in 1.4. The APS Data Management System, the facility-wide software and hardware system 
for managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. For the PtychoProbe APS-U feature beamline, workflows will provide a pipeline to 
automatically run tools to remove artifacts from data, reconstruct the XRF and Ptychography data set, and 
view results. 

2.7.5 Computing Infrastructure 

Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources will be provided for on-the-fly data processing and experiment steering. Computing capacity for 
larger data processing tasks and for post-experiment processing and analysis will be provided by computing 
centers, including the ALCF and Argonne’s Laboratory Computing Resource Center (LCRC). The APS Data 
Management System and Globus tools will be used to seamlessly integrate these resources. 

2.7.6 Data Reduction and Analysis Software 

The PtychoProbe APS-U feature beamline requires two modes of data processing: elemental fitting for XRF 
microscopy data and ptychography data reconstruction. Descriptions of current efforts and plans in each of 
these areas follow. Table 2-15 and Table 2-16 summarize capabilities for each of these two modes, 
respectively. Many of the data processing requirements for the PtychoProbe APS-U feature beamline are like 
those of the ISN APS-U feature beamline described in 2.5. 

Elemental Fitting for XRF Microscopy Data 

The APS develops and supports the XRF-Maps and uProbeX software packages for XRF microscopy data 
processing and visualization (see Figure 2-6). This software is available as open-source packages 
(https://github.com/AdvancedPhotonSource/XRF-Maps and 
https://github.com/AdvancedPhotonSource/uProbeX). The XRF-Maps package performs elemental map 
fitting and the uProbeX application is a GUI for visualizing XRF-Maps results. XRF-Maps and uProbeX are both 
written in C++. XRF-Maps supports multi-core data processing in a shared-memory CPU environment and has 
a Python wrapper which allows all the functionality to be called from a Python environment. 

APS-U enhancements will allow for larger scan areas and/or finer pixel sizes resulting in larger datasets. 
These larger datasets may not be able to fit in system memory. To accommodate this XRF-Maps implements 
a streaming architecture that allows processing a dataset spectra by spectra without having to load the entire 
dataset. Only a limited number of spectra are loaded based on memory limits, processed, and saved to an 
HDF5 file until the whole dataset is processed. As data sizes increase, it may be become necessary to develop 
GPU-based and distributed-memory CPU- and GPU-based elemental fitting software. 

The higher intensity x-ray beam generated by the APS-U storage ring necessitates the utilization of self-
absorption correction when generating elemental maps. APS researchers and instrument staff are working on 
developing new self-absorption correction algorithms in collaboration with staff at the National Synchrotron 
Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL). These algorithms are being implemented 
and tested in the XRF-Maps software. 

Table 2-15 Summary of XRF microscopy elemental mapping data processing needs and status for the ISN APS-U feature 
beamline. 

Capability Algorithm / Software Requirement Status 
XRF Elemental Map Fitting Algorithms for elemental map fitting Done 

Multi-core shared-memory CPU implementation Done – APS Operations 
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Streaming data processing / operate on out-of-
core data 

Done – APS Operations 

Distributed-memory CPU and GPU 
implementation 

To do – If required 

XRF Self-Absorption Correction Self-absorption correction algorithm 
development 

In Progress – APS Operations and collaborations 
with NSLS-II 

Self-absorption correction implementation in 
XRF-Maps 

In Progress – APS Operations 

 

Ptychography Reconstruction 

Ptychography has emerged as a powerful technique at synchrotron light sources. It will play a central role in 
answering many emerging scientific questions that the upgraded APS will help solve. Advanced ptychographic 
reconstruction algorithms and software are critical to take advantage of this new and innovative technique. 

Multiple ptychographic reconstruction algorithms are required to achieve reasonable reconstruction quality 
to best analyze ptychography data collected for different domains and of varying sample characteristics. The 
APS has implemented the extended Ptychographic Iterative Engine (ePIE), regularized Ptychographic Iterative 
Engine (rPIE), conjugate gradient, Difference Map (DM), and iterative Least-SQuares solver for generalized 
Maximum-Likelihood (LSQ-ML) methods. Algorithms to help improve reconstruction quality, such as position 
and probe variation correction, and affine position regularization, are being developed and implemented. 

Due to the computationally complex nature of ptychographic reconstruction algorithms and due to the 
anticipated increase in data rates and sizes in the APS-U Era, distributed high-performance implementations 
of ptychography reconstruction software are required. The APS with collaborators in Argonne’s Mathematics 
& Computer Science (MCS) division developed PtychoLib, a distributed-memory GPU implementation of the 
extended Ptychographic Iterative Engine (ePIE) in 2014 and integrated Difference Map (DM) algorithms in 
2018. PtychoLib was written in C++ and uses MPI and CUDA. The software was shown to scale on up to 256 
GPUs on the ALCF’s Cooley GPU cluster. This software has been supported and extended since then and has 
been the main tool used for high-performance ptychography reconstructions at APS beamlines. PtychoLib has 
been the main tool used for high-performance ptychography reconstructions at APS beamlines for the past 
decade. PtychoPy (https://github.com/kyuepublic/ptychopy) was developed as a Python wrapper and GUI for 
PtychoLib. Since then, the APS has consolidated ptychography development into the tike 
(https://github.com/AdvancedPhotonSource/tike) toolkit in order to make installing and developing new 
ptychography features and algorithms easier. This toolkit is written in Python and uses CuPy as the 
underlying GPU framework. All the reconstruction features of PtychoLib have been reimplemented in the tike 
toolkit including MPI and thread-based parallelism. Ptychodus, is a new pyQT-based GUI/workflow manager 
for ptychography reconstruction workflows has also been created in order to provide live reconstruction 
visualization and analysis. 

Table 2-16 Summary of ptychography reconstruction needs and status for the PtychoProbe APS-U feature beamline. 

Capability Algorithm / Software Requirement Status 
Conventional Reconstruction GPU implementation of extended Ptychographic Iterative 

Engine (ePIE) method 
Done – APS Operations 

GPU implementation of Difference Map (DM) method Done – APS Operations 
GPU implementation of the iterative Least-SQuares solver for 
generalized Maximum-Likelihood (LSQ-ML) method 

Done – APS Operations 

Improved Reconstruction Quality Position correction In Progress – Implemented in tike 
and currently being tested – APS 
Operations 

Probe variation correction In Progress – Implemented in tike 
and currently being tested – APS 
Operations 

Multi-probe retrieval In Progress – Implemented in tike 
and currently being tested – APS 
Operations 
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Mini-batches In Progress – Implemented and 
currently being tested – APS 
Operations 

Multi-wavelength In Progress – APS Operations 
Arbitrary fly-scan To do – APS Operations 
Multi-slice ptychography To do – APS Operations 
Integration with CNN denoising and priors (regularization) In Progress – APS Operations 
Affine position regularization In Progress – APS Operations 

High-Performance 
Implementations 

Scalable distributed-memory GPU implementation of 
extended Ptychographic Iterative Engine (ePIE) method 

Done – APS Operations and ASCR 
funding 

Scalable distributed-memory GPU implementation of 
Difference Map (DM) method 

Done – APS Operations and ASCR 
funding 

Scalable distributed-memory GPU implementation of 
iterative least-squares solver for generalized maximum-
likelihood (LSQ-ML) method 

Done – APS Operations 

Ptychographic reconstruction using AI/ML In Progress – APS Operations & 
LDRD 

 

APS-U Era data rates are expected to be so large that traditional algorithms may not be able to keep up with 
acquired data. These data rates are so large, and the scientific problems that APS-U Era capabilities can 
enable are so great, that porting and scaling current models and algorithmic approaches may not realize the 
full promise of next-generation light sources. Using AI techniques, APS researchers have developed an 
approach to improve the performance of ptychographic reconstructions. A deep neural network model is 
trained to predict and reconstruct ptychographic x-ray data. This approach, PytchoNN, can then perform 
reconstructions up to 300 times faster than conventional iterative approaches and uses up to 5 times less 
data, speeding up both data acquisition and data reconstruction (see Figure 2-7). 

2.7.7 Effort, Funding, and Collaborations 

Network infrastructure to the edge of the PtychoProbe APS-U feature beamline will be provided by APS-U 
funding. All other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-
wide data management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 
FTE per year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to 
the PtychoProbe APS-U feature beamline for on-the-fly processing and experiment steering will be provided 
from APS-U funding. Large-scale computing resources are provided by APS Operations funding, ALCF funding, 
and Argonne Laboratory Computing Resource Center (LCRC) funding as described in 1.5. The APS dedicates 
approximately 1 FTE per year for XRF elemental mapping and diffraction space-mapping software 
development from APS Operations funding. 

The following LDRD funding was awarded to support these efforts: 

• Novel Capabilities for Ultra-fast and Ultra-low-dose 3D Scanning Hard X-ray Microscopy (FY18) 
• Enabling Automatic Learning of Atmospheric Particles through APS-U (FY19) 
• Learning and Differentiating: Using Artificial Intelligence to Image Beyond the X-ray Depth of Focus Limit 

(FY19) 
• Intelligent Ptychography Scan via Diffraction-Based Machine Learning (FY20) 
• AutoPtycho: Autonomous, Sparse-sampled Ptychographic Imaging (FY21) 
• AI Accelerator for 3D X-ray Phase Retrieval with Automatic Differentiation (FY21) 
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Figure 2-6 Left: uProbeX displaying integrated spectra from a dataset in blue, background subtraction in green, modeled spectra 
in orange, and elemental lines for element S. Right: uProbeX displaying Calcium quantities of an analyzed fish fossil. Elemental 
maps are generated with XRF-Maps. 

 
Figure 2-7 Architecture of PtychoNN, a deep convolutional neural network that can predict real-space amplitude and phase from 
input diffraction data alone. 

2.8 X-ray Photon Correlation Spectroscopy (XPCS) APS-U Feature Beamline 
2.8.1 Summary 

The X-ray Photon Correlation Spectroscopy (XPCS) APS-U feature beamline will be dedicated to time-resolved 
coherent x-ray scattering experiments for a diverse scientific community; experiments will exploit the 
brilliance of the upgraded source to study fundamental materials structures. Since the signal to noise for 
XPCS scales as the square of the brilliance which will increase 500x in the APS-U era, it will be possible to 
measure faster dynamics and weaker scattering systems. The small- and wide-angle instruments will probe 
dynamics in soft and hard matter respectively. 

In the APS-U era, the XPCS APS-U feature beamline will operate in modes that vary between collecting time 
series of area detector frames at very high frame rates (up to 100 kHz) and at moderate frame rates (a few 
kHz to Hz). The XPCS APS-U feature beamline is anticipated to collect up to approximately 20 PB of raw data 
per year, in comparison to approximately 0.1 PB of data collected today at the 8-ID beamline. These data 
generation estimates form the basis for networking infrastructure, controls, data management, and data 
processing planning. Table 2-17summarizes the data rates and total data accumulation for the anticipated 
experimental configuration at the XPCS APS-U feature beamline. 

Table 2-17 Estimated data generation rates at the XPCS APS-U feature beamline. 
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APS-U Era XPCS – Fast Eiger 4M 4.0 4,000 15.63 390.63 20 65.92 20 2,765 
XPCS – Fast UHSS 3M 3.0 56,000 164.06 292.97 15 207.64 20 8,725 
XPCS – Average Eiger 4M 16.0 1,000 15.63 468.75 15 65.92 20 2,765 
XPCS – Average UHSS 3M 6.0 8,500 49.80 351.56 20 168.09 20 7,055 

* Raw uncompressed data rate. 
** Based on 1,440 minutes in one day. 
*** Based on 210 days of beam time per fiscal year. 

2.8.2 Network Architecture and Infrastructure 

Network infrastructure needs will be addressed by the facility plan described in 1.2. 

2.8.3 Controls, Data Acquisition, and Detector Integration 

Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, 
Equipment Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 

2.8.4 Data Management, Workflows, and Science Portals 

The APS-U XPCS feature beamline will leverage the data management, workflow, and science portal efforts 
described in 1.4. The APS Data Management System, the facility-wide software and hardware system for 
managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. For the XPCS APS-U feature beamline, workflows will provide a pipeline to automatically 
transfer data to computing resources for processing, launch processing jobs, and save results for 
visualization. A streaming data pipeline will be developed so that the data is processed in near real-time. 

2.8.5 Computing Infrastructure 

Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources may be provided for on-the-fly data processing and experiment steering. Computing capacity for 
these data processing tasks and for post-experiment processing and analysis will be provided by computing 
centers, including the ALCF and Argonne’s Laboratory Computing Resource Center (LCRC). The APS Data 
Management System and Globus tools will be used to seamlessly integrate these resources. 

2.8.6 Data Reduction and Analysis Software 

The main technique used for analyzing XPCS data involves auto-correlating time-resolved signals. Table 2-18 
shows algorithm requirements based on science drivers, along with current algorithm development status. 
The Multi-Tau and Two-Time correlation algorithms are most used when processing data that studies 
equilibrium and non-equilibrium dynamics, respectively. These algorithms are already well developed and in 
common use. Higher-order time correlations are required to study spatial and temporal heterogeneity, 
intermittent dynamics, and avalanches. The study of speckle metrology, nanoscale flow, and velocimetry 
require the use of spatial-temporal cross-correlations. Development of these latter two classes of algorithms 
is underway at the APS and with APS Users and collaborators, including collaborators at CAMERA. 

Table 2-18 Summary of algorithm requirements for the XPCS APS-U feature beamline. 

Science Driver Algorithm Requirement Status 
Equilibrium Dynamics Multi-Tau Correlation Done 
Non-Equilibrium Dynamics Two-Time Correlation Done  
Spatial and temporal heterogeneity, intermittent 
dynamics, avalanches 

Higher-Order Time Correlations In Progress – APS Operations, APS User 
group collaborations, and CAMERA 

Speckle metrology, nanoscale flow, and 
velocimetry 

Spatial-Temporal Cross-Correlations In Progress – APS Operations, APS User 
group collaborations, and CAMERA 
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The APS develops and maintains the high-performance boost-corr auto-correlation software package for 
processing XPCS data. This tool utilizes multiple CPU cores and a single GPU in a shared-memory environment 
to quickly produce auto-correlations of XPCS data using the Multi-Tau and Two-Time algorithms. The 
pyXpcsViewer tool (https://github.com/AdvancedPhotonSource/pyXpcsViewer) helps users visualize and 
analyze correlation results generated from boost-corr (see Figure 2-8). A GPU implementation of the Multi-
Tau algorithm has been developed that shows significant performance improvements over the current CPU 
implementation. 

The current feature sets and performance today’s software is adequate for today’s needs. However, the 
estimated increase in overall data that will be generated at the XPCS APS-U feature beamline necessitates 
improvements and advances in software. The APS is planning to develop implementations of higher-order 
time correlation and spatial-temporal cross-correlation algorithms and develop higher-performance 
distributed-memory CPU and GPU software applications. Table 2-19 summarizes XPCS software capabilities 
and current development statuses for the XPCS APS-U feature beamline. 

Table 2-19 Summary XPCS APS-U feature beamline data reduction and processing software capabilities and needs. 

Capability Software Requirement Status 
Multi-Tau Correlation Shared-memory CPU implementation Done – APS Operations 

Distributed-memory CPU implementation To do – APS Operations 
Single GPU implementation Done – APS Operations 
Multiple GPU implementation To do – APS Operations 

Two-Time Correlation Shared-memory CPU implementation Done – APS Operations 
Distributed-memory CPU implementation To do – APS Operations 
Single GPU implementation Done – APS Operations 
Multiple GPU implementation To do – APS Operations 

Higher-Order Time Correlations CPU implementation To do – APS Operations – pending algorithm 
development 

GPU implementation To do – APS Operations – pending algorithm 
development 

Spatial-Temporal Cross-
Correlations 

CPU implementation To do – APS Operations – pending algorithm 
development 

GPU implementation To do – APS Operations – pending algorithm 
development 

 

Physics-Informed Machine Learning from Speckle Patterns 

While fitting measured correlation functions to approximate models is often used to extract physical insights 
from raw speckle patterns, there are potential benefits to learning physics directly from the data. To this end, 
we outline and test a proof of concept for recovering physical equations from measured speckle patterns 
based on neural Ordinary Differential Equations (ODEs). In contrast to a traditional neural ODE workflow, the 
real-space dynamics of the system probed by coherent scattering are considered inaccessible apart from the 
initial condition. Instead, a neural network model of the ODE is trained by minimizing a loss function of the 
predicted and true sequence of speckle patterns. Using the trained model, we can then not only accurately 
predict future dynamics but also extract the model’s dependence on the system variables to recover 
quantitative information about the governing equations. The extension of this framework to more complex 
systems and more realistic simulations is ongoing and will seek answers to additional questions, particularly 
the suitable balance between model flexibility and interpretability. 

Automated Classification of Experimental Data 

Recent work by APS scientists has applied unsupervised machine learning to automate the processing of XPCS 
Two-Time correlations. While algorithms exist for calculating these correlations from scattering data, 
methods for interpretation and quantification of Two-time correlations are still needed for studying non-
equilibrium dynamics. A deep neural network was trained to recognize and reproduce spatial patterns in two-
time correlations and encode these features into a low-dimensional representation. After using this neural 
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network to encode entire datasets, clustering was performed to classify experimental data without requiring 
any input or physical knowledge form the user. In a similar manner, this automated method can be used to 
suggest similar two-time correlations based on a user-specified feature of interest, drastically reducing the 
analysis time required to comb through large XPCS datasets and identify interesting results. Future work aims 
to again use unsupervised machine learning to detect anomalous events and changes in the dynamic 
behavior of evolving systems to enable on-line data analysis at the beamline. 

2.8.7 Effort, Funding, and Collaborations 

Network infrastructure to the edge of the XPCS APS-U feature beamline will be provided by APS-U funding. 
All other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-wide data 
management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 FTE per 
year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to the 
XPCS APS-U feature beamline for on-the-fly processing and experiment steering will be provided from APS-U 
funding. Large-scale computing resources are provided by APS Operations funding, ALCF funding, and 
Argonne Laboratory Computing Resource Center (LCRC) funding as described in 1.5. The APS dedicates 
approximately 1.0 FTE per year for XPCS related algorithm and software development from APS Operations 
funding. 

CAMERA provides effort in support of XPCS algorithm development. An Argonne MGM Fellow provides effort 
related to physics-informed machine learning. 

The following LDRD funding was awarded to support this effort: 

• Intermittent Dynamics in Hard and Soft Materials enabled by APS-U (FY22) 

 

 
Figure 2-8 Top: g2 plots of the multi-tau correlation results. Users have many options to visualize data. Bottom: Visualization of 
a two-time correlation of a rubber sample. Users can select the region of interest by clicking the mouse. 
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2.9 3D Micro and Nano (3DMN) Diffraction APS-U Feature Beamline 
2.9.1 Summary 

The 3D Micro and Nano Diffraction (3DMN) APS-U feature beamline is designed to address a wide range of 
spatially inhomogeneous materials problems at the mesoscopic scale. These problems range over many areas 
of science where previous x-ray diffraction techniques are insufficient due to the short length scale of the 
inhomogeneities in the materials. 3DMN proposes to overcome current difficulties by using the bright MBA 
source to provide small intense x-ray spots (50-200nm) to investigate the important spatial variations of 
strain and structure that define this wide range of scientifically and technologically important materials. 

In the APS-U era, the 3DMN feature beamline will perform Laue depth reconstruction diffraction scans. 
3DMN will be able to operate in a mode like the current wire or knife-edge scan mode. This should allow 
analysis to work with some adjustments for data volume. 3DMN’s updated detectors will lead to an increase 
in the size of acquired data from 6 megapixels (from 3 detectors) to 10 megapixels per collection point. To 
optimize use of updated beam parameters, it will be necessary to further decrease the size of the steps in a 
scan thus increasing the data volume. A new more efficient data collection mode is proposed that uses scans 
with a mask in place of a wire. Instead of blocking off one row with a wire in the scattered beam, a mask is 
used which passes only the previously blanked row. This new method allows for processing a larger data 
volume at each point by holding the number of scanned points close to the current wire scan. This will keep 
data volumes per dataset lower but requires implementing a new algorithm that is currently being 
developed. The new mode will allow more datasets of equal quality to be collected in the same amount of 
time as compared to the current wire scan method. 

Table 2-20 shows the estimated data generation rates at the 3DMN APS-U feature beamline, and current 
data rates at the 34-ID-E instrument, for comparison. The 3DMN APS-U feature beamline is anticipated to 
collect approximately 2.8 PB of raw compressed data per year, in comparison to approximately 400 TB of 
data collected today at the 34-ID-E instrument. This represents slightly less than a one-order-of-magnitude 
increase in data. Note that in the APS-U era, it is anticipated that the 3DMN instrument will likely use the 
mask scan mode instead of the wire scan mode, assuming sufficient algorithmic developments. Although the 
overall amount of data generated by the two modes is the same in Table 2-20, the mask scan mode estimates 
represent a much larger amount of individual sample scans, and thus more final data. These data generation 
estimates form the basis for networking infrastructure, controls, data management, and data processing 
planning. 

Table 2-20 Data generation rates today at the 34-ID-E Laue diffraction instrument (for comparison) and estimated data 
generation rates at the 3DMN APS-U feature beamline. 
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Today Wire Scan 
 

PE XRD 1620 
AN 

8 4 0.03 500 3.91 1 3.91 2.08 50 1.32 45 125 

PE XRD 1620 
AN + 2 x PE 
XRD 0820 AN 

12 4 0.05 500 5.86 1 5.86 2.08 50 1.98 5 21 

PE XRD 1620 
AN 8 8 0.06 500 3.91 1 3.91 1.04 50 2.64 45 249 

PE XRD 1620 
AN + 2 x PE 
XRD 0820 AN 

12 8 0.09 500 5.86 1 5.86 1.04 50 3.96 5 42 

Pilatus 6M 24 100 2.34 1000 23.44 3.5 6.7 0.17 50 28.25 20 1,187 
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APS-U 
Era++ 

Wire Scan – 
Fast+ 

Pilatus 6M + 
2 x 2 MP 
Detectors 

40 100 3.91 1000 39.06 3.5 11.16 0.17 50 47.08 5 494 

Wire Scan – 
Average+ 

Pilatus 6M 24 25 0.59 1000 23.44 3.5 6.7 0.67 50 7.06 70 1,038 
Pilatus 6M + 
2 x 2 MP 
Detectors 

40 25 0.98 1000 39.06 3.5 11.16 0.67 50 11.77 5 124 

Mask Scan 
– Fast+ 

Pilatus 6M 24 100 2.34 200 4.69 3.5 1.34 0.03 50 28.25 20 1,187 
Pilatus 6M + 
2 x 2 MP 
Detectors 

40 100 3.91 200 7.81 3.5 2.23 0.03 50 47.08 5 494 

Mask Scan 
– Average+ 

Pilatus 6M 24 25 0.59 200 4.69 3.5 1.34 0.13 50 7.06 70 1,038 
Pilatus 6M + 
2 x 2 MP 
Detectors 

40 25 0.98 200 7.81 3.5 2.23 0.13 50 11.77 5 124 

* A compression factor of 1.0 represents no compression. 
** Based on 1,440 minutes in one day. 
*** Based on 210 days of beam time per fiscal year. 
+ It is anticipated that the 3DMN instrument will likely use the mask scan mode instead of the wire scan mode, assuming sufficient algorithmic 
developments. Although the overall amount of data generated by the two modes is the same, the mask scan mode estimates represent a much 
larger amount of individual sample scans. 
++ The APS-U project has descoped certain parts of the 3DMN Feature beamline, including detector purchases. Although the detectors listed in 
the table may not be purchased as a part of the APS-U project, this table represents the desired long-term potential capabilities intended for 
this beamline. 

2.9.2 Network Architecture and Infrastructure 

Network infrastructure needs will be addressed by the facility plan described in 1.2. 

2.9.3 Controls, Data Acquisition, and Detector Integration 

Controls, data acquisition, and detector integration needs will be addressed by the facility plan described in 
1.3. Detailed plans and schedules are described in respective APS-U beamline controls documents, 
Equipment Specification Documents (ESDs), and Instrument Specification Documents (ISDs). 

2.9.4 Data Management, Workflows, and Science Portals 

The APS-U 3DMN feature beamline will use the data management, workflow, and science portal efforts 
described in 1.4. The APS Data Management System, the facility-wide software and hardware system for 
managing data and workflows, will integrate data collection and processing workflows, manage user 
permissions based on experiment groups, and enable user access to data. Globus tools will provide a science 
portal for viewing and accessing data and automating the re-processing of data after the allotted experiment 
time has ended. For the 3DMN APS-U feature beamline, workflows will provide a pipeline to automatically 
run the wire or mask scan Laue depth reconstruction processing software and view results. 

2.9.5 Computing Infrastructure 

Computing infrastructure needs will be addressed by the facility plan described in 1.5. Some local computing 
resources will be provided for on-the-fly data processing and experiment steering. Computing capacity for 
larger data processing tasks and for post-experiment processing and analysis will be provided by computing 
centers, including the ALCF and Argonne’s Laboratory Computing Resource Center (LCRC). The APS Data 
Management System and Globus tools will be used to seamlessly integrate these resources. 

2.9.6 Data Reduction and Analysis Software 

Processing Laue micro- and nano-diffraction microscopy data generally consists of three main steps in the 
following order: depth reconstruction, peak searching and indexing, and q-space histogram generation. The 
depth reconstruction process generates new images corresponding to the scattering observed from a single 
depth. Peak searching and indexing finds all the peaks and indexes them to get the crystal orientation of a 
Laue pattern. With energy scans, a 1D or 3D histogram of intensity in q-space may also be generated. 
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The APS develops and maintains the LaueGo software for Laue depth reconstructions of wire scan mode 
data. The software is available as an open-source package (https://github.com/34IDE/LaueGo). It performs 
peak searching and indexing, depth reconstruction, and q-space histogram generation for wire scan data. 
Versions are available in both Igor and C. A CUDA GPU implementation is available to improve performance 
on GPU equipped workstations. 

The current feature set and performance of LaueGo and the corresponding GPU implementation is adequate 
for today’s needs. However, the estimated increase in overall data that will be generated at the 3DMN APS-U 
feature beamline necessitates improvements and advances in software and algorithms. 

In order to improve data collection time in the APS-U era, the APS is developing coded-aperture scans that 
may replace the current wire-scans for obtaining depth reconstructions. Along with higher-performance 
implementations of the contemporary wire scan mode data, high-performance implementations of coded-
aperture reconstruction methods are being developed. Table 2-21 summarizes Laue depth reconstruction 
data reduction needs, approaches, and status for the 3DMN APS-U feature beamline. 

Table 2-21 Summary of Laue depth reconstruction data reduction needs, approaches, and status for the 3DMN APS-U feature 
beamline. 

Capability Algorithm / Software Requirement Status 
Reconstruct Laue microscopy wire 
scan data 

Algorithms for Laue microscopy wire scan 
reconstruction 

Done – APS Operations 

CPU and GPU software for Laue microscopy wire 
scan reconstructions 

Done – APS Operations 

Parallel distributed-memory CPU and GPU 
software for APS-U era wire scan data 

To do – APS Operations 

Reconstruct Laue microscopy 
mask scan data 

Algorithms for Laue microscopy coded-aperture 
reconstruction 

In Progress – Past LDRD, APS Operations 

CPU and GPU software for Laue microscopy wire 
scan reconstructions 

In Progress – APS Operations 

Parallel distributed-memory CPU and GPU 
software for APS-U era mask scan data 

In Progress – APS Operations 

 

2.9.7 Effort, Funding, and Collaborations 

Network infrastructure to the edge of the 3DMN APS-U feature beamline will be provided by APS-U funding. 
All other network infrastructure is funded by APS Operations funding as described in 1.2. Facility-wide data 
management, workflows, and science portal effort is funded by APS Operations (approximately 2.5 FTE per 
year) and the Globus Services team as described in 1.4. Some local computing resources dedicated to the 
3DMN APS-U feature beamline for on-the-fly processing and experiment steering will be provided from APS-
U funding. Large-scale computing resources are provided by APS Operations funding, ALCF funding, and 
Argonne Laboratory Computing Resource Center (LCRC) funding as described in 1.5. A postdoc is dedicated to 
development of the new mask scan algorithm. The APS will dedicate appropriate software development 
effort from APS Operations funding. 

The following LDRD funding was awarded to support this effort: 

• Coded Apertures for Depth Resolved Diffraction (FY20) 
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ARGONNE NATIONAL LABORATORY 
¨ U.S. Department of Energy research facility 

¨ Operated by the University of Chicago 

¨ Midwest’s largest federally funded R&D facility 

¨ Located in Lemont, IL, about 25 miles (40 km) 
southwest of Chicago, IL (USA) 

¨ Conducts basic and applied research.              
in dozens of fields 

¨ Unique suite of leading-edge and rare scientific 
user facilities 

 

http://www.anl.gov/

