Update on the GeoSoilEnviroCARS (Sector 13) Canted Undulator Upgrade

Peter Eng CARS University of Chicago

2005

• SAC Review

"The SRP would like to encourage GSECARS to apply for canted undulators. We suggest that their chances of success in acquiring canted undulators will be improved if they approach funding agencies at the same time that they approach APS management."

2006

• GSECARS NSF and DOE Renewal

A detailed canted upgrade plan was developed with the plan to seek additional funding.

• Letter of Intent Submitted to the APS Scientific Advisory Committee

2007

• SAC Meeting and Letter from Murray Gibson

"The APS will give high priority to providing and installing a second undulator in Sector 13–depending, of course, on other commitments and budget constraints at the time."

2008

• An attempt to secure a University of Chicago slot for an NSF MRI proposal failed

• White Paper Submitted to DOE, NASA and NSF to share the beamline side of the upgrade

Three equal cost sharing proposals were subsequently prepared and submitted.

- NASA Funding Recommended
- NSF Funding Recommended (ARRA)

2009

- DOE Single Investigator and Small Group Research " (SISGR) program was been selected for funding
- GSECARS Front End Canted upgrade funded through the APS request for stimulus funding (ARRA)

2009

• October - Undulator Design compete (U30 and U36) expected ready to install January 2012

Ring Energy	7 GeV
Current	100 mA
Undulator Period	3.0 cm
Undulator K	2.123 @ 11 mm gap
Undulator Length	2.1 m
Undulator Periods	70
Horizontal Angular Size	117.9 µrad (3 mm @ 25.446 m)
Vertical Angular Size	78.6 µrad (2 mm @ 25.446 m)
Total Undulator Power	3.74 kW
Total Power passed by aperture	1.084 kW
Angular Peak Power Density	134.3 kW/mrad ²

Ring Energy	7 GeV
Current	100 mA
Undulator Period	3.6 cm
Undulator K	3.202 @ 11 mm gap
Undulator Length	2.1 m
Undulator Periods	58
Horizontal Angular Size	117.9 µrad (3 mm @ 25.446 m)
Vertical Angular Size	78.6 µrad (2 mm @ 25.446 m)
Total Undulator Power	5.87 kW
Total Power passed by aperture	1.163 kW
Angular Peak Power Density	141.6 kW/mrad ²

2010

- May Phase 1 Hutch modification
- 2011
 - January Phase 2 Hutch modification
 - November FDR approved
 - December Relocate large KB mirrors to make way for SOE work starting March 2012.

2012

• January – U30 (downstream / inboard) undulator and new straight section installed

• March 13 – ID goes global offline, GSECARS ID is Dark for last 7 weeks of run 2012-1. 12 week to gut and install

2012

- White Bean in BID-C Down I am Unducator 7=3.0 cm Gap = inn Power = 4.3 KW Une 157 2012 Matt potte Amerida • June 6th - First Users Inboard Cant **Entrance Port in 13-ID-E** • October 18th – First beam into IDE Outboard Cant
- June 1st First beam to ID-C/D (Two Days Late due to vacuum policy confusion)

2013

• January 29 – Full user program on both beamlines

The Design

We needed to consider the existing layout and programs and put together an optics plan and layout that would allow us to:

- 1. Use to the greatest extent our existing optics and equipment,
- 2. Provide a substantial improvement in performance,
- 3. Provide new capabilities
- 4. Generate the experimental setup space needed for each end station given the tight space constraints inherent to a 1 mrad beam separation

Mono energy range 5-65 keV and 100 W white beam

Sector 13

13-ID-A (FOE)

Beam Viewer / Power Limiting Pinhole Outboard Double Horizontal Mirror Outboard Mono Inboard Mono APS Exit Table

Tested to 150 mA

Fe k-edge, Si 111, Inboard Beamline 12 Scans

Pt k-edge, Si 311, Inboard Beamline

Fast > 10 deg/sec

0.2 micro radian Encoder Resolution

Two Inline Mirrors Each 500 mm long

Dynamically Bent Si substrate, with Rh, Pt, Si Stripes

Inboard Beam Passes Through Aperture in the Bender, allowing the outboard canted beam to be outboard deflected by the mirrors

High Resolution Beam Viewer and Power Limiting Aperture

13-ID-B (SOE)

Inboard Vertical Large KB Mirror

MegaPixel Map IDE Mono Si 111, No Feedback, Non-Top Up Mode

Wooly Mammoth bone cross-section

Mammoth preserved in permafrost, Yukagir, Siberia, ca. 20,000 years old

2 mm x 2mm, 2 μm pixels (1000 x 1000 pixels)

30ms dwell time per pixel Total acquisition time: 9 hours

IDC/D Mono Beam Burn on back wall of 13-ID-C

5 Monolayers of LAO on STO Specular Rod, E = 39 keV

Thank the APS for exceptional service and support throughout our upgrade process

Acknowledge the CARS beamline staff for being the muscle behind the upgrade

Acknowledge Instruments Design Technologies - IDT - for their willingness to be collaborative and innovative and deliver high quality instruments