

APS-U emittance studies — optics consideration

Xianbo Shi Jan. 14, 2015

Coherent flux portion

Coherent flux portion (brightness mode)

$$
\frac{F_C}{F} = \frac{\lambda^2}{(4\pi)^2 \Sigma_x \Sigma_x' \Sigma_y \Sigma_y'}
$$

Normalized to ε_0 = 67 pm case

Coherent flux portion (timing mode)

$$
\frac{F_C}{F} = \frac{\lambda^2}{(4\pi)^2 \Sigma_x \Sigma_x' \Sigma_y \Sigma_y'}
$$

Normalized to ε_0 = 67 pm case

Coherent flux – optics effect

Possible source of coherent flux reduction:

1. optics angular vibration (σ_{vib})

2. optics slope error (σ_{SF})

 Assume a vertical or horizontal reflection optics (mirror or monochromator) is located $p = 30$ m from the source and the optics accepts the full beam, the virtual source size is broadened by

$$
\Delta \sigma_x
$$
 or $\Delta \sigma_y = 2p \sigma_{\text{vib}}$ or $2p \sigma_{\text{SE}}$

 \blacksquare The coherence flux is reduced to:

$$
\frac{F_c \Sigma_x}{\sqrt{\Sigma_x^2 + \Delta \sigma_x^2}} \text{ or } \frac{F_c \Sigma_y}{\sqrt{\Sigma_y^2 + \Delta \sigma_y^2}}
$$

Coherent flux – optics effect

APS-U brightness mode

 $\cdot \cdot \cdot \varepsilon_0 = 32$ pm, $\cdot \cdot \cdot \cdot \varepsilon_0 = 50$ pm, $\cdot \varepsilon_0 = 67$ pm, $\cdot \cdot \cdot \varepsilon_0 = 100$ pm

Coherent flux – optics effect

APS-U timing mode

 $\cdot \cdot \cdot \varepsilon_0 = 32$ pm, $\cdot \cdot \cdot \cdot \varepsilon_0 = 50$ pm, $\cdot \varepsilon_0 = 67$ pm, $\cdot \cdot \cdot \varepsilon_0 = 100$ pm

Beam focusing studies

■ Source emittance:

■ 4.8 m long undulator, at 20 keV

■ Two cases:

- 1. Demagnification focusing: $p = 70$ m, $q = 700$ mm, $L_m = 400$ mm, $\theta = 3.0$ mrad
- 2. Diffraction limited focusing: $p = 70$ m, $q = 70$ mm, $L_m = 70$ mm, $\theta = 3.0$ mrad

Demagnification dominated focusing

p = 70 m, *q* = 700 mm, *L^m* = 400 mm

LCLS mirror specification

HYBRID simulation results with an ideal mirror as well as with different slope errors focusing in vertical direction.

- *1.* $\sigma_{SE} = 0.04$ *μrad*
- *2.* $\sigma_{SE} = 0.1 \,\text{µrad}$

3.
$$
\sigma_{SE} = 0.2 \text{ } \mu \text{rad}
$$

Diffraction limited focusing

p = 70 m, *q* = 70 mm, *L^m* = 70 mm

HYBRID simulation results with an ideal mirror as well as with different height errors focusing in vertical direction.

- *1.* $\sigma_{\text{HE}} = 0.5 \text{ nm}$
- *2.* $\sigma_{\text{HE}} = 1.0 \text{ nm}$

$$
3. \quad \sigma_{\text{HE}} = 2.0 \text{ nm}
$$

Remarks

- Reducing the source emittance benefits mostly the coherent flux, especially at high photon energies.
- **The optics vibration and slope error can cause the loss of coherent** flux. Horizontally bounced optics is preferred.
- For the beam focusing, reducing electron source emittance does not have linear effects on focal sizes. The smallest achievable size is also limited by the photon (undulator radiation) size and the diffraction limit of the optics.
- The currently available state-of-the-art mirror could satisfy most of the needs of APS-U. Reducing source emittance will require better optics, which need more studies.

Thank you!