

Exploration of a Tevatron-Sized Ultimate Light Source

Michael Borland

Argonne National Laboratory

April 2, 2012

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Outline

- Introduction
- Generalities
 - Optimization of emittance
 - Scaling of lattice and collective effects
 - Emittance ratio
 - PEP-X MBA modules
- Possible Tevatron-sized light source
 - Design concept
 - Analysis of microwave instability
 - Choice of beam energy
 - Nonlinear dynamics optimization
 - Performance predictions
 - Short-pulse x-rays
- Conclusion

Introduction

- Not long ago, widely accepted that rings had reached the end of the road
- However, there are continuing improvements
 - PETRA-III: 1nm emittance at 6 GeV
 - NSLS-II: targeting 0.5 nm at 3 GeV
 - MAX-IV: targeting 0.25 nm at 3 GeV
 - SPRing-8 upgrade targeting 0.07 nm at 6 GeV
- Improvements are driven by
 - Advances in lattice design
 - Improved understanding of nonlinear dynamics
 - Improved lattice correction techniques
- Tevatron was recently shut down for good
 - Emittance scales like 1/C³
 - What can we do with a 6.28 km tunnel?
 - We present a snapshot of on-going work on this question

Methods of Decreasing Emittance

- To decrease the natural emittance, we can
 - Reduce the energy
 - Decrease ${\mathcal H}$
 - Stronger focusing
 - More frequent focusing
 - Increase damping
 - Damping wigglers
- A useful approximation¹

 $\epsilon \propto E_0^2 \frac{\langle \mathcal{H}/\rho^3 \rangle}{\langle 1/\rho^2 \rangle}$

Used **elegant** to simulate scaling APS to larger circumference by adding more fixed-length cells.

 $\epsilon = F(\nu_x, \text{lattice}) \frac{E_0^2}{J_x N_d^3}$

¹J. Murphy, Light Source Data Book, BNL.

Nonlinear Dynamics

- More dipoles and/or stronger focusing →
 - $_{-}$ smaller dispersion (1/N_d)
 - $_{-}$ higher tunes, chromaticity (N_d)
- Chromatic sextupole strength scales like N_d²
 - Expect 1/N_d² scaling
 of dynamic and
 momentum aperture¹
 - Smaller dynamic aperture
 → injection problems
 - Smaller momentum aperture
 → lifetime problems
- Use of additional sextupole families or octupoles necessary, but there are limits.

More data from the scaling simulation. Again no surprise.

Sextupole strengths are inversely proportional to average dispersion.

¹L. Emery, private communication.

Collective Effects

■ Smaller dispersion → smaller momentum compaction α_c → shorter bunch, reduced synchrotron tune → increased collective effects

Simulations assume rf voltage adjusted for constant rf acceptance.

Collective Effects

- Touschek scattering $\frac{1}{\tau} \sim \frac{N_b N_d^{1.8}}{E^{4.1}}$
- Intrabeam scattering

$$\frac{1}{\tau} \sim \frac{N_b N_d^{5.5}}{E^{8.1}}$$

• TMCl¹
$$I_{fht} = \frac{\pi \nu_s b^2 E}{R\langle\beta\rangle |Z/n|} \sim \frac{E}{N_d^{1.5}\langle\beta\rangle}$$

Microwave instability²

$$I_{mw} = \frac{\sqrt{2\pi}\alpha_c E\sigma_l \sigma_\delta^2}{R|Z/n|} \sim \frac{E^{3.3}}{N_d^{5.5}}$$

Computed with **toushekLifetime** and **ibsEmittance** (A. Xiao *et al.*) 1: B. Zotter, Handbook of Accel. Phys. and Engineering. 2: H. Weidemann, Particle Accelerator Physics, Vol. 1.

Implications for a Tevatron-Sized Ring

- At 7 GeV, APS (C=1.1 km) has^{1,2}
 - Microwave instability at 5 mA
 - TMCI at 2 mA (low chromaticity)
 - ~8 hour Touschek lifetime with 15 nC bunches, 1% coupling, and ±2.2% momentum aperture
 - Negligible IBS
- For 7 GeV, C=6.28-km APS-like ring, we expect
 - Microwave instability at 0.3 μA (!)
 - TMCI at 150 μA
 - 0.25 h Touschek lifetime
 - Non-negligible IBS
- What can we do?
 - Raise beam energy
 - Increase emittance ratio
 - Run many weak bunches
 - Lengthen the bunch
 - Dig into details

1: K. Harkay *et al.*, EPAC02, 1505. 2: Y.C. Chae *et al.*, PAC03, 3014.

Effect of Emittance Ratio

- Scaling for IBS and Touschek assumes emittance ratio is fixed
- For very low natural emittance, this is pointless
 - Intrinsic emittance from undulator is¹

$$\epsilon_r = \frac{\lambda}{2\pi}$$

- Pointless to make either horizontal or vertical emittance significantly less than this
- For 10 keV photons, threshold is about 10 pm
- Tevatron-sized APS-like lattice has 16 pm natural emittance
 - Set emittance ratio $\kappa \sim 1$ without harming brightness much
 - More about this later

Injection Issues

- All present-day ring light sources use beam accumulation
 - Each stored bunch/train is built up from several shots from the injector
 - Incoming beam has a large residual oscillation after injection
 - Requires horizontal DA of $\sim 10 \text{ mm}$ or more
 - Because of x-y coupling, residual oscillations result in loss on vertical small-gap chambers
 - Incompatible with large x-y coupling
- We proposed to use "swap-out" injection^{1,2}
 - Kick out depleted bunch or bunch train
 - Simultaneously kick in fresh bunch or bunch train
 - Injector requirements and radiation issues seem manageable³
- This was the operating mode of the first dedicated SR source, TANTALUS⁴

¹M. Borland, "Can APS Compete with the Next Generation?", APS Strategic Retreat, May 2002.

²L. Emery, M. Borland, "Possible Long-term Improvements to the APS," Proc. PAC 2003, 256-258 (2003)

³M. Borland, Proc. SRI09, AIP Conf. Proc. 1234, 2010.

⁴E. M. Rowe and F. E. Mills, Particle Accelerators **4**, 211 (1970).

MBA Concept

- The APS lattice used for this scaling study is a doublebend design
 - We increased N_d by increasing the number of cells
 - Circumference increases with N_d
- Could also scale cells down while keeping fixed circumference
 - Hard to get very far with this approach
- Best approach is to make Multi-Bend Achromats¹
 - Allows more dipoles in the same circumference
 - Smaller number of comparable-length straights
- MAX-IV ring² now under construction will be the first MBA ring

¹D. Einfeld et al., Proc. PAC 95, 177-179 (1996). ²S.C. Leeman *et al.*, PRSTAB **12**, 120701 (2009).

PEP-X USR Design

 PEP-X group at SLAC has developed a robust 7BA lattice for a proposed light source in the PEP tunnel^{1,2}

- Choose cell phase advance to make +I transform for each arc of N cells:
 - $v_x = 2 + m/N$ and $v_y = 1 + n/N$
 - This results in cancellation of many 2nd-order geometric and chromatic aberrations^{3,4}
 - For PEP-X, N=8 and m=n=1

- ¹M.-H. Wang *et al.*, Proc IPAC11, THPC074.
- ²Y. Nosochkov *et al.*, Proc. IPAC11, THPC075.
- ³K. Brown, SLAC Rep. 75, June 1982.
- ⁴Y. Cai, NIM A 645:168-174 (2011).

Illustration of Effect of Right Phase Advance

Running with Round Beams

- There are various ways to make "round beams", i.e., $\kappa \sim 1$
 - Run on the $v_x v_y = N$ resonance:

• Pro:
$$\epsilon_x = \epsilon_v = \epsilon_0/2$$

- Con: hard to control
- Add a vertically-deflecting damping wiggler
 - Pro: wiggler will provide damping
 - Con: strong, long-period wiggler will impact energy spread, no sharing of ϵ_0 between planes
- Add x-y emittance-exchange insertions outside of arcs
 - Pro: simple implementation, doesn't mess up cancellation of driving terms inside arcs

• Con:
$$\epsilon_x = \epsilon_y = \epsilon_0 / \sqrt{2}$$

- Of these, the EEX insertion seems preferable
 - Need to explore beam dynamics effects, however
 - Is it actually different from running on $v_x v_y = N$?

Exploratory "TevUSR" Lattice

- All lattice modules are taken from the PEP-X design^{1,2,3}
 - N=30 MBA cells in each of six arcs
 - 180 ID straight sections (!)
 - Straight sections use FODO cell
 - Six matching quads between arc and FODO cells
- Differences from PEP-X design
 - Larger bending radius
 - Higher energy
 - Improves damping times, reduces IBS etc.
 - No high-beta insertion for injection
 - Will use on-axis injection, so not needed
- For cell tunes, started with Y. Cai's suggestion of $v_x = 2.166$,
 - $v_{y} = 1.166$
 - 2.1 pm natural emittance at 9 GeV
 - Nonlinear dynamics too difficult

¹M.-H. Wang *et al.*, Proc IPAC11, THPC074. ²Y. Nosochkov *et al.*, Proc. IPAC11, THPC075. ³Y. Cai, NIM A 645:168-174 (2011).

Scan of Cell Tunes (9 GeV)

SFL

0/n9

2.2

Preliminary MOGA Optimization with New Tunes

- Starting condition
 - All sextupoles except SF and SD set to 0
 - SF and SD set to give chromaticity of 1 in x and y
- Better results immediately, but no errors included
 - More later...

Analysis of Microwave Instability

Recall the basic MWI equation

$$I_{mw} = \frac{\sqrt{2\pi}\alpha_c E\sigma_l \sigma_\delta^2}{R|Z/n|}$$

- Need value for |Z/n| to use here
 - We determined $|Z/n|=0.28\Omega$ for APS from measurement of bunch length vs current
- Gives MWI threshold of
 - ~2 µA
 - Improved from scaling analysis
 - Would need S-band rf system to get 100 mA

Problems with this analysis

- APS MWI threshold well above predicted value
 - Using simple formula, predicted MWI is 0.9 mA
 - Measured MWI¹ is \sim 5 mA
- Problem is that equation is too simple
 - Ignores resistive part of impedance
 - Ignores detailed frequency dependence
- For simplicity, just apply a 5x fudge factor
- Also, need to include
 - Bunch lengthening due to impedance and IBS
 - Energy spread increase due to IBS
 - Vary the beam energy
- We use some programs that come with elegant
 - haissinki²: potential well distortion
 - **ibsEmittance**³: intrabeam scattering
 - touschekLifetime³: Touschek lifetime
 - Assume κ=1

- 1: L. Emery et al. 2: A. Xiao et al.
- 3: K. Harkay et al., EPAC02, 1505.

Trends in longitudinal parameters

- For 0.5 nC case, trends are promising
- E.g., for 9 GeV
 - Energy spread increases by 50%
 - Bunch lengthens nearly three-fold
- Hints of an advantage to *lower* energy

Surprising trends in MWI and Touschek

- MWI threshold is >0.9 nC throughout range
- Threshold generally *increases* with decreasing energy
 - Completely contrary to scaling results
 - Due to PWD and IBS, ignored before
- Touschek lifetime calculation assumes ±2% momentum acceptance
 - Also increases at lower energy!

Trend for Emittance

- For 0.5 nC, broad minimum centered on 9 GeV
 - <4 pm in both planes is not too bad...</p>
- Appears that increased Touschek lifetime *does not* result from transversely colder beam at low energy
- We'll take 9 GeV as our working energy

Nonlinear Dynamics Optimization¹

- Use tracking-based Multi-objective Genetic Algorithm (MOGA) to directly improve
 - Dynamic acceptance area
 - Touschek lifetime computed from local momentum acceptance for first arc cell
 - Uses parallel **elegant**² and geneticOptimizer³
- Variables
 - Integer tunes
 - Fractional tunes
 - Three SF families
 - Five SD families
 - Three harmonic sextupole families
- Add errors to give $\sim 1\%$ lattice function beats, $\kappa \sim 0.2$
- ID chambers with ±18mm by ±3mm gaps
- Chromaticities corrected to +1 in both planes
 - 1: M. Borland *et al*., APS LS-319, 2010.
 - 2: Y. Wang et al., Proc. ICAP2009, 355-358.
 - 3: M. Borland, H. Shang, unpublished.

Snapshot of on-going results

Beam dynamics effects of undulators are ignored.

Lattice parameters

Betatron Tunes]
Horizontal	344.100		
Vertical	171.164		
Natural Chromaticities			
Horizontal	-476.675		
Vertical	-274.241		
Lattice functions			
Maximum β_x	113.354	m	
Maximum β_y	39.925	m	
Maximum η_x	0.012	m	
Average β_x	13.542	m	
Average β_y	7.555	m	
Average η_x	0.007	m	
Radiation-integral-related quantities at 9 GeV			
Natural emittance	2.918	$_{\rm pm}$	
Energy spread	0.096	%	
Horizontal damping time	91.382	\mathbf{ms}	
Vertical damping time	243.007	\mathbf{ms}	
Longitudinal damping time	713.162	\mathbf{ms}	
Energy loss per turn	1.535	MeV	
Miscellaneous parameters			
Momentum compaction	5.979×10^{-6}		
Damping partition J_x	2.659		
Damping partition J_y	1.000		
Damping partition J_{δ}	0.341		

Exploration of a Tevatron-Sized Ultimate Light Source, M. Borland, ASD Seminar, 4/2/12

Lattice functions

Dynamic acceptance

- Adequate for injection and quantum lifetime
- Impacts gas scattering lifetime
 - Assume 0.5 nT and same partial pressures as APS
 - Predict 4.5 hour gas scattering lifetime

Local momentum acceptance

- This is lower than the ±2% target
- Predicted Touschek lifetime is 8 hours for 0.5 nC bunches
 - Combined lifetime with gas scattering is \sim 3 hours
- Next step: add octupoles (?)

Magnet Strengths

- PEP-X design has combined function quadrupoles and sextupoles
- Here, we just look at strengths separately
- Sextupoles require ~12mm bore radius (using L=0.35m)

Name	Length	Gradient
		T/m
QD1	0.15	-53.79
QD2	0.17	⊾ -51.48
QD3	0.15	-59.37
QDS1	0.15	-13.00
QDS2	0.15	-39.93
QDS3	0.15	-15.29
QDSE	0.15	-6.61
QF1	0.28	62.62
QF2	0.20	93.26
QF3	0.20	71.71
QFC	0.20	72.04
QFS1	0.15	-6.15
QFS2	0.15	30.22
QFS3	0.15	7.58
QFSE	0.15	5.43

Name	Integrated Strength
*	T/m^2
SD1	-4139.60
SD2	-4066.24
SD3	-4014.99
SD4	-4140.59
SF1	6650.50
SF2	6730.27
SF3	6618.28
SH1	-9.43
SH2	2.02
SH3	25.70
SH4	-21.24
$\mathrm{SH5}$	-3.77
SH6	10.65

Injection Parameters

- For 200 mA and 0.5 nC/bunch, need ~8300 bunches
 - 500 MHz rf, fill 80% of 10360 buckets
 - 4.1 μs of 20.7 μs revolution time available for kicker rise/fall
 - If $T_{rise} = T_{fall} = 10$ ns, need $N_T = 202$ trains of 41 bunches
 - Kicker flat-top is 82 ns long
- Droop between replacements of a given train is

$$D \approx \Delta T_{\rm inj} N_{\rm T} / \tau$$

- Assuming $\tau=3$ h and D=0.1, need $\Delta T_{ini} = 5.3$ s
- Inject 41 bunches of 0.5 nC each time
 - Average power of 34 W
 - A photoinjector could easily provide the needed bunch trains

Low-Emittance Booster Injector

- A large-circumference booster can have emittance close to that of the ring (e.g., SLS booster)
 - Optics is "easy" since there are no user straights
 - Can occupy the same tunnel as the user ring to reduce cost
- Like USR itself
 - Ultra-low emittance
 - On-axis injection

Full-Energy Linac Injector

- In principle, could fill the ring in one shot or using trains
- Probably not the optimum choice
 - 9 GeV emittance would be ~30 pm for typical ~0.5 nC bunches
 - Probably can do better with in-tunnel booster
 - Short bunches may be a problem
 - Collective effects may accentuate beam-quality blip
 - Long linac requires costly separate tunnel
 - Linac structures, rf systems more costly and less reliable than booster
- However
 - Might use linac for 10~100 turn mode with short pulses
 - The linac could also drive an FEL in its spare time

Radiation Load

- Radiation from extracted trains is small
 - Again, only about 30 W
 - No problem to design a dump for this
- Radiation load from 3 hour lifetime is more worrisome
 - 3.5 W predicted average power
 - For APS, have only 0.15 W at worst
 - Collimation for Touschek losses is presumably straightforward
 - How to intercept gas-scattered electrons without cutting into dynamic acceptance?

Brightness (200 mA, 9 GeV)

Use of damping undulators

- Damping times are very long
- Explored use of SCU as damping devices
 - 1T, 17mm period
 - 6.7m long
 - 14 devices per long straight
- 420 kW radiation power per straight at 200 mA

Collective effects with 1 DU straight

Collective effects with 1 DU straight

 Emittance at 9 GeV drops from 3.6 pm to 2.8 pm

Zholents' Transverse Rf Chirp Concept¹

¹A. Zholents *et al.*, NIM A 425, 385 (1999).

Pulse Duration Estimate

Minimum pulse duration is¹

$$\sigma_t \approx \frac{E}{V\omega} \sqrt{\frac{\epsilon}{\beta} + \frac{\lambda}{\pi L}}$$

- The intensity is reduced by (approximately) the ratio of the bunch duration to the x-ray pulse duration
- For TeVUSR, take some parameters similar to APS-U²
 - 2815 MHz with 8MV (APS-U uses 2 MV)
 - 12 keV radiation (1 A)
 - Taking 4 pm emittance gives 0.2 ps rms
 - Intensity is ~0.5% of nominal
 - Average rate is ~400 MHz
- Unlike APS-U, could put this in a long straight to avoid nonlinear dynamics issues³
 ¹ Emprired al, BAC11, 2348 (2011)

¹L.Emery *et al.*, PAC11, 2348 (2011) ² K. Harkay et al., PAC05, 668 (2005).. ³M. Borland, PRSTAB 8(7), 074001, (2005).

Conclusion

- We presented a snapshot of on-going work on a Tevatronsized USR
 - PEPX-based lattice design starting to show good results for nonlinear dynamics
 - Microwave and other (?) instabilities seem workable
 - Extremely high brightness promised from a 9 GeV ring
 - Chirping scheme provides very short x-ray pulses
- Much work still needed
 - more detailed analysis of collective instabilities
 - is higher current possible?
 - magnet design and lattice iteration
 - further error studies and nonlinear dynamics optimization
 - effects of damping undulators and insertion devices
 - cost reduction
 - science case

Acknowledgements

 Thanks to the PEP-X team for providing their lattice and helpful comments and suggestions

- K. Bane, Y. Cai, R. Hettel, Y. Nosochkov, M.-H. Wang

 Thanks to A. Zholents for comments on earlier versions of this talk