

## Cryogenic Systems for the APS Upgrade

Joel Fuerst ASD/MD

ASD Seminar 30JAN2012



#### Outline

- Helium usage (1)
- Safety
- Loads/temperatures/locations
- Methods of refrigeration
  - SCU: cryocoolers
  - SPX: expansion engine refrigeration
- Support for SPX R&D
- Helium usage (2)
- Summary



#### Fermilab uses some helium - 1981 (1)



#### Fermilab uses some helium - 1981 (2)



#### Fermilab uses some helium - 1981 (3)



5

#### Fermilab uses some helium - 1981 (4)



#### Fermilab uses some helium - 1981 (5)



#### **Cryogenic Systems Safety**

- ES&H-4.10 Cryogenic Liquid Safety
- ES&H-13.1 Pressure Systems Safety
- Vacuum Systems Consensus Guideline for DOE Accelerator Laboratories
- 10 CFR 851 Worker Safety and Health Program
  - 851.3(a): Pressure systems means all pressure vessels, and pressure sources including cryogenics, pneumatic, hydraulic, and vacuum.
  - Appendix A, 4. Pressure Safety:
    - (a) establish policies & procedures to ensure systems follow sound engineering principles
    - (b) ensure pressure vessels & piping systems conform to the ASME Boiler & Pressure Vessel Code and the applicable ASME B31 piping standards
    - (c) when codes are not applicable, implement measures to provide equivalent protection
- n PTSC (https://docs.anl.gov/lms/processes/safety/LABCOM-1.28)
- Training (Cryogenic Safety, ESH 145; Pressure Safety Orientation, ESH 119)
- Oxygen Deficiency Hazard (ODH) & engineered control measures
  - Environmental controls: ventilation (natural or forced), monitoring
  - Personnel controls: training, signage, barriers to entry, personal monitors, escape packs, etc. depending on hazard level



| ODH Class | <b>Fatality Rate φ</b> [hr- |  |  |
|-----------|-----------------------------|--|--|
|           | 1]                          |  |  |
| 0         | φ <1e-7                     |  |  |
| 1         | 1e-7≤φ<1e-5                 |  |  |
| 2         | 1e-5≤φ<1e-3                 |  |  |
| 3         | 1e-3≤φ<1e-1                 |  |  |
| 4         | 1e-1≤φ                      |  |  |

# $\varphi = \sum_{i=1}^{n} P_i F_i$

### FNAL example failure rate Pi: 5A. Magnet (cryogenic)

"Up to January 1999, there have been 63,000 hours of Tevatron system powered conditions. There have been 11 magnet spill events mostly, if not all, due to single-phase rupture to vacuum from an electrical fault. Then magnet "powered, unmanned " failure rate is: Tailure rate =  $\frac{63000 \times 1000}{1000}$  magnets





ASD Seminar: Cryogenic Systems for the APS Upgrade

9

#### Heat loads/Operating temperatures

SCU (design values per device)

SPX (design values for full installation)

|     | Heat<br>source           | Temp<br>[K] | Design<br>load [W] | Installed<br>capacity [W] |
|-----|--------------------------|-------------|--------------------|---------------------------|
| SCU | Magnet                   | 4.3         | 0.7                | 3                         |
|     | Rad shield/<br>beam tube | 20          | 12                 | 40                        |
|     | Rad shield               | 60          | 86                 | 224                       |

| SPX | Srf cavities | 2.0 | 100  | 320        |
|-----|--------------|-----|------|------------|
|     | Rad shield   | 5-8 | 300  | 500        |
|     | Rad shield   | 80  | 2000 | 4000 (LN2) |



#### **Cryogenic Systems Locations**

SPX0: sector 5 (production SPX in sectors 5 & 7)

SCU0: sector 6



#### SCU: Gifford-McMahon (GM) cryocooler cycle



#### RDK-415D Typical Load Map (60Hz)

#### Sumitomo RDK-415D Performance Maps

- Upper graph shows performance envelope under various operating conditions
- Lower graph shows available 2nd stage (lowest temperature) cooling power as a function of temperature during cooldown





#### Bldg 314 - JAN2012



#### SPX Approach

- Cryoplant purchased turn-key from industry
  - Build-to-performance based on peer-reviewed APS-U spec
  - Follow established procurement strategies (JLab, FNAL, FRIB, SNS)
  - Distribution system purchased and installed by industry
  - BOE drawn from recent plant procurements (FNAL) and SME input
- Cryomodules supplied by JLab
  - Designed in collaboration with ANL, to meet ANL ES&H requirements
  - Consistent with SR constraints
  - Cryomodule and distribution system heat loads set cryoplant performance spec
- Cryosystems for R&D phase
  - JLab contributions
  - ANL-designed components

Reviews will follow SCU model ASD Seminar: Cryogenic Systems for the APS Upgrade

#### **SPX: Expansion Engine** Refrigeration

Basic Claude cycle: n

ID Fueret



30 IAN2012



#### Existing SPX-sized cryoplants

- ELBE (Dresden-Rossendorf)
  - Electron Linac
  - Linde custom refrigerator operating since 1999
  - 220 W at 1.8 K

ELBE compressors, coldboxELBE compressors, coldbox

- TRIUMF (Vancouver)
  - RIB Linac (ISAC-I, II)
  - Dual Linde TCF50
    refrigerators commissioned
    2006 and 2008
  - Total 1200 W at 4.5 K



TRIUMF coldboxes & dewarTRIUMF compressor

- BESSYII (Berlin)
  - Light Source, ERL R&D
  - Linde *L70*0 liquefier: 710 L/hr
  - Linde TCF50 refrigerator: 150
    W at 4.5 K + 55 L/hr
    liquefaction







HoBiCaT test cryostat

#### **Distribution system example: FRIB**

- Transfer line multiple line, shielded, vacuum jacketed
- Feedbox connects transfer line to cryomodules



ID Fueret

30 IAN2012



#### PHY resonator test area: existing srf facility at ANL

- Located in bldg 203
- Part of ATLAS heavy ion accelerator
- Low-beta srf cavity development
- Two shielded, interlocked test caves
- Cryogenic support (frig, dewars)
- <2.0K capability (>50W @2.0K thanks to APS improvements)
- Very crowded, esp. for HTB tests







#### SPX srf cavity R&D at ANL

- <sup>§</sup> New infrastructure provided by APSU:
  - 2.5g/s vacuum pump needs to return to APS for SPX0 (or PHY buys us another)
  - Thermometry, liquid level, pressure instrumentation, LabView + PC
  - <sup>§</sup> LLRF, HLRF and associated electronics
  - New JTHX feedcan + neck insert for 24" dewar
  - S New transfer tubes as required
- R&D has 3 phases:
  - Single "bare cavity" vertical tests in modified PHY 24" LHe vessel
  - 2) Single "dressed cavity" horizontal tests in modified PHY TC2 vessel
  - <sup>3)</sup> Test of JLab Horizontal Test Bed (HTB) 2cavity module (requires 2 complete rf stations)



ARSU Semifrar: Certogenil Systems of the APS Upgrade

TC2 with PHY SSR prototype

#### PHY 24" ID vertical test dewar lavout



#### Test dewar: neck insert/JTHX feedbox

- Fabricated by Meyer Tool from ANL-supplied Pro/E model
- Designed to accommodate active cavity pumping
- JTHX sized for 2.5g/s at 1.8K: n
  - HP stream: 4.5K inlet, ~2.2K outlet, <20kPa  $\Delta$ P
  - LP stream: 1.8K inlet, <100Pa  $\Delta P$
  - 450mm x 150mm x 125mm (LxWxD)



30 IAN2012 ID Fuerst

#### New vacuum system

- Rated for 2.5 g/s at 20 torr
- Identical to units at Fermilab





#### **Engineering Cooldowns**

- Cryosystem works
- Vacuum pump measured performance:
  - 60 W at 2.0 K (~3 g/s at 24 torr)
  - 40 W at 1.9 K
  - 25 W at 1.8 K
  - 15 W at 1.7 K





#### **Neck Insert with Cavity**

Installation complete 30NOV11

Ready for cooldown 02DEC11









#### **Cavity test results**

Mark-I Cavity (CC-B1 for SPX Project) Vertical Test at ANL 12/20/2011



#### **Preparations for Phase 2**



#### Phase 3 example: FNAL "A0 North" cavity test area



- Vac system alongside supply dewars
- Vacuum instulated transfer line on the wall behind

n Transfer line enters cave, divides, connects to cryostat services

#### Helium usage

- FNAL Tevatron era: avg. 30,000 cubic feet/day = 1200 liquid liters/day
- FNAL A0 Photoinjector (1.8 K, 500L dewar fed): 500L/day for several years before finally installing a gas recovery system
- SPX0 will be dewar fed (like the A0PI...)
  - If the heat load is 40W,
  - Then the flow rate is about 2 g/s
  - Which equals 58 L/hr
  - So a 500L dewar lasts one 8 hr shift:
    - How many shifts will it take to learn the lessons of SPX0?
    - How will these shifts be distributed, and what sort of "stand-by" can we implement when not testing?

#### **Major Challenges and Risks**

SCU:

n

n

- Verify magnet cooling scheme
- Verify heat load estimates
- Verify cryostat assembly and alignment scheme
- SPX:
  - Accurate estimate for heat loads
  - Damper thermal load management
  - Cryomodule layout/subsystem packaging
  - Alignment
  - Microphonics



#### **Summary**

- Activities are aligned with laboratory standards & policies
- SME involvement end-to-end
- Consistent review process
- Close collaboration with partner laboratories
- Active communication with cryogenics community:
  - Laboratories
  - Universities
  - Industry