

PROGRESS ON FAST DETECTORS FOR XPCS AT APS AND APS-U

Juan P. Garrahan PNAS 108, 4701 (2011)

ALEC SANDY

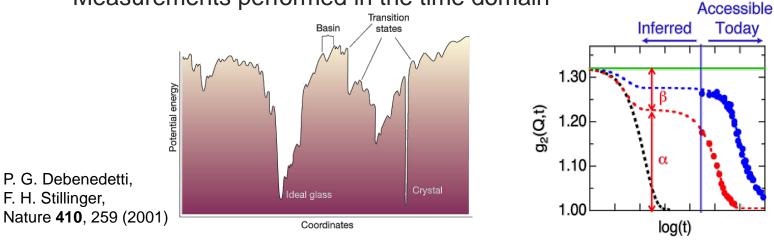
ACKNOWLEDGEMENTS

Detector specific

- APS
 - Eric Dufresne
 - Suresh Narayanan
 - Qingteng Zhang
 - Rebecca Bradford
 - Nino Miceli
 - John Weizeorick
- BNL
 - Abdul Rumaiz
 - Pete Siddons
- FNAL
 - Grzegorz Deptuch

- AGH University, Poland
 - Anna Koziol
 - Piotr Maj
 - Piotr Kmon
 - Robert Szczygiel
 - Pawel Grybos
- LDRD program for facilitating UFXC collaboration and science applications

OUTLINE


- APS-U XPCS beamline
 - General motivation and considerations
- Detectors
 - Requirements
 - Landscape
 - R&D efforts
 - Ultrafast x-ray camera (UFXC)
 - Vertically integrated photon imaging chip (VIPIC)
- Conclusions

APS-U XPCS BEAMLINE

X-ray photon correlation spectroscopy (XPCS)

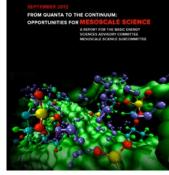
- Tool for measuring the nano- and meso-scale dynamic properties of materials via correlations within a time-evolving x-ray speckle pattern
 - Measurements performed in the time domain

 Lack of coherent flux and appropriate detectors limit sensitivity to motion in time and space

APS-U XPCS BEAMLINE

Mission and supported techniques


- Mission
 - Application of hard (~ 8–25 keV) coherent x-rays to measure dynamics in complex materials at the nano and mesoscale
- Supported Techniques:
 - X-ray photon correlation spectroscopy at small and large scattering angles
- Why APS-U?


Coherent flux (Intensity) = Brightness × $\lambda^2/4$ SNR = Contrast × Intensity × $(T\tau N)^{1/2}$ Accessible delay times (τ) \propto 1/Brilliance²

APS-U XPCS BEAMLINE Why?

Five Challenges for Science and the Imagination

Directing Matter and Energy

2015

2012

2007

"Many real materials are inherently heterogeneous across spatial and temporal scales, as evidenced by their compositional, spatial/structural, and temporal fluctuations and disorder. Yet we often have considered materials in idealized, 'frozen' states or as represented by their spatially or temporally averaged structures. These overly simplistic models do not capture the nuances of structure and dynamics that often drive desired functional behavior."

Challenges at the Frontiers of Matter and Energy, BESAC (2015)

APS-U XPCS BEAMLINE Requirements

- Maximize brightness → Maximum coherent flux
- Energy range
 - 8-25 keV, continuous tunability and scanning not required
- Variable bandpass (AE/E) radiation
 - ~ 1% for near USAXS (pinhole) XPCS to 0.005% for WA-XPCS
- Variable sample spot sizes (zoom focusing)
 - Tunable sensitivity to fluctuation length scales and efficient speckle sampling
- Dedicated small-angle and wide-angle experiment stations
- Dynamic range
 - Up to 10 orders of magnitude in delay time: 100 ns 1,000 s

DETECTOR REQUIREMENTS

Item	Requirement	Comment
Form factor	2-D	≥ 10 ⁶ pixels
Pixel size	≤ 100 µm	
Efficiency	~ 100%	≤ 25 keV
Туре	Integrating preferred	Counting almost always works especially w/ multiple gates
Dynamic range	Small	Can be ≤ 2 bits
Frame rate	≈ 1–10 MHz	76 ns spacing in 48-bunch mode
Readout	Sparse	
Timing	Synch with ext. signals	
Other	Rolling buffer 8	Intermittent event capture

DETECTOR LANDSCAPE

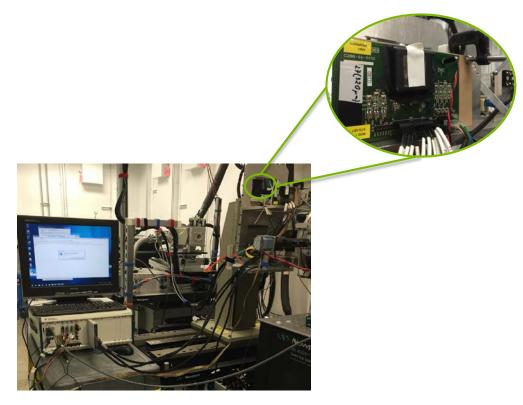
Commercial detectors (PADs): APS-U Scope

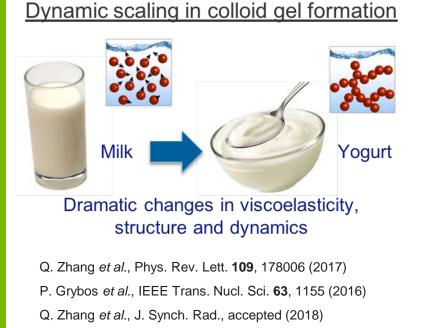
Parameter	Lambda		Eiger		
Pixel Size (µm)	55	<	75	✓ 🗆	
Size (Mpix)	0.75	$\checkmark \square$	0.5	X	
Frame Rate (MHz)	0.002	Х	0.009	X	\geq
Sparsified readout	Sorta	Х	Sorta	X	
Dynamic range (bits)	12	•	4 (@9 kHz)	✓ □	
Time resn (1/frame rate) (µs)	500	Х	110	X	>
	<u>Automa</u>	(PECTYLE ECSPX BOLK		Argo

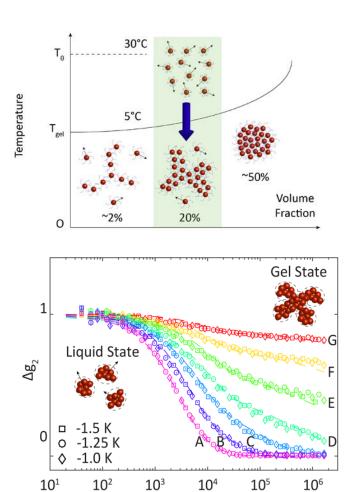
DETECTOR LANDSCAPE

Commercial and R&D PADs

Parameter	Lambda	Eiger	UFXC	VIPIC-L
Pixel Size (µm)	55	75	75	65
Size (Mpix)	0.75	0.5	0.03	1
Frame Rate (MHz)	0.002	0.009		
Sparsified readout	Sorta	Sorta	No	Yes
Dynamic range (bits)	12	4 (@9 kHz)	2	2, 5, 7
Time resn (1/frame rate) (µs)	500	110		
				155.05.000



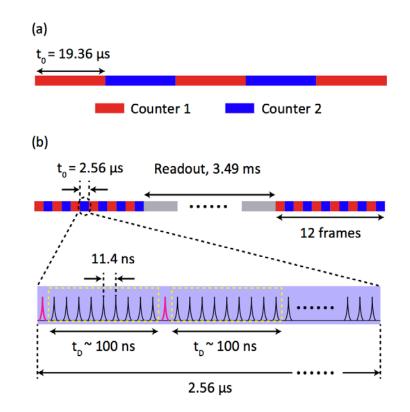

- Collaboration with AGH University
 - 128 × 256 75-µm pixels
 - 300-µm-thick Si sensor
 - 2 × 14-bit counters per pixel
 - 2-bit-depth for fast XPCS
 - World-record continuous
 XPCS frame rates of 50 kHz
 0.05 MHz


Q. Zhang *et al.*, Phys. Rev. Lett. **109**, 178006 (2017)
P. Grybos *et al.*, IEEE Trans. Nucl. Sci. **63**, 1155 (2016)
Q. Zhang *et al.*, J. Synch. Rad., accepted (2018)

Science application:

DELAY TIME t (µs)

12

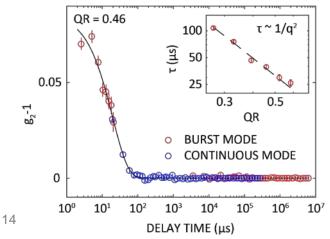


- Still higher frame rates achieved by acquiring a small number of frames in a "burst"
 - 2 × 14-bit counters per pixel reconfigured to rapidly acquire 12 × 2-bit signals (then a relatively slow readout)

Q. Zhang et al., Phys. Rev. Lett. 109, 178006 (2017)

P. Grybos et al., IEEE Trans. Nucl. Sci. 63, 1155 (2016)

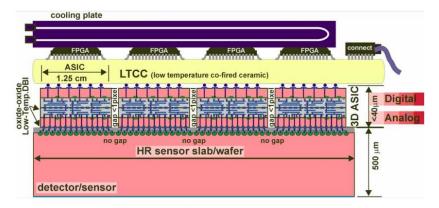
Q. Zhang et al., J. Synch. Rad., accepted (2018)



- Still higher frame rates achieved by acquiring a small number of frames in a "burst"
 - Stitch 2.6 µs results with
 20 µs continuous frames
- Correlation decays measured over 7 decades in delay time

Q. Zhang *et al.*, Phys. Rev. Lett. **109**, 178006 (2017)
P. Grybos *et al.*, IEEE Trans. Nucl. Sci. **63**, 1155 (2016)
Q. Zhang *et al.*, J. Synch. Rad., accepted (2018)

Dynamics of R=10 nm colloids in water


DETECTOR LANDSCAPE

Commercial and R&D PADs

Parameter	Lambda	Eiger	UFXC	VIPIC-L
Pixel Size (µm)	55	75	75	65
Size (Mpix)	0.75	0.5	0.03	1
Frame Rate (MHz)	0.002	0.009	0.4	
Sparsified readout	Sorta	Sorta	No	Yes
Dynamic range (bits)	12	4	2	2, 5, 7
Time resn (1/frame rate) (µs)	500	110	2.56	
	Chant	PECTIPHE EIGEPTX		

DETECTORS VIPIC pixel array detector

- Collaboration of FNAL, ANL and BNL to build an XPCS-optimized detector – < 2014: prototype, ≥ 2014: 2× 1 Mpix detectors (NSLS-II and APS-U)
- 3-D detector structure enables parallel time-tagging of arriving photons with precision < 150 ns
 - Sparse and "image" readout modes

G. Deptuch et al., IEEE Trans. Elect. Dev. 63, 205 (2016)

VIPIC prototype commissioning team

DOE Pulse - 🚻 🗰

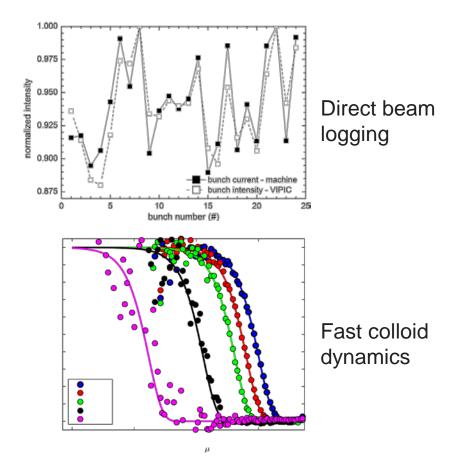
Number 428 | December 8, 201

Multilaboratory collaboration brings new X-ray detector to light

and Argonne work on a new type of X-ray detector that uses a 3-D imaging chip. Baboration blending research in DOE's offices of <u>High:</u> to Physics with <u>Basic Energy Sciences</u> is yielding a onewind X-ray detector. Results activeted with a powerhul oxyse detector featuring a 3-b imaging chip already hav add ablentish from the scientific sommunity.

new type of detector boasts <u>prophaven Lap</u> sensors unted on <u>Permitab</u> Integrated circuits linked to <u>Accorne</u> data expussition systems. It will be used at Broakhaven's <u>cont_Synchrotron_Loht_Source_II</u> and Argorne's anced_Photos. Source

"This partnership between HEP and BES has been a fruitful collaboration, advancing detector technology for both fields,"

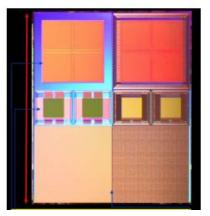


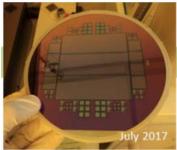
16

DETECTORS VIPIC pixel array detector

- Results from the 64 X 64 pixels
 VIPIC prototype detector:
 - Programmatic funding to ANL, BNL, and FNAL to develop a full-sized version of this detector
 - Prototype no longer functioning but VIPIC-L development proceeding

A. Rumaiz et al., J. Synch. Rad. 23, 404 (2016)


DETECTORS VIPIC pixel array detector


VIPIC-L status

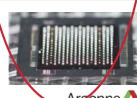
ASIC has been designed, but needs to be validated

Completed and tested prototypes of all detector electronics

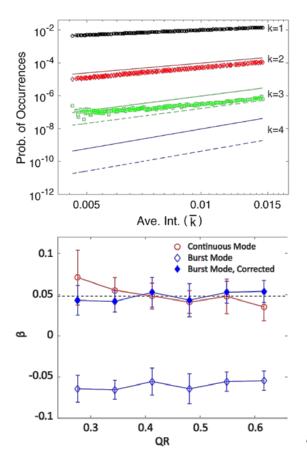
Sensor designed and fabricated

FELIX data acquisition card

DETECTOR LANDSCAPE


Commercial and R&D PADs

Parameter	Lambda	Eiger	UFXC	VIPIC-L
Pixel Size (µm)	55	75	75	65
Size (Mpix)	0.75	0.5	0.03	1
Frame Rate (MHz)	0.002	0.009	0.4	0.08
Sparsified readout	Sorta	Sorta	No	Yes
Dynamic range (bits)	12	4 (@9 kHz)	2	2, 5, 7
Time resn (1/frame rate) (µs)	500	110	2.56	0.02 × Hits



TO-DO AND CONCLUSIONS

- Technical:
 - Small numbers of photon events reveal subtle problems:
 - Speckle contrast (β) $\beta \approx 2 \times [P(2)/P(1)^2] \times [1-P(1)] - 1$ - Pixel-response dead-time of ~130 ns changes β from ~ 0.05 to ~ -0.07
- Many issues remain but 1–10 MHz frame rates for APS-U XPCS detectors do not seem completely crazy

THANK YOU

www.anl.gov