

Magnet Material Choice

Liz Moog

LCLS Undulator System Final LLP Pre-production Review 15-16 Nov 2004

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Potential vendors

Prequalified:

- Shin-Etsu
- Neomax (formerly Sumitomo Special Metals)

Others:

- Outokumpu
- Vacuumschmelze
- Ugimag
- Dexter (representing Chinese manufacturer)

Radiation resistance

- A significant issue for LCLS magnet choice is radiation resistance.
- Radiation resistance has been found to vary with the vendor
- Within a particular vendor's line, higher coercivity is correlated to better radiation resistance.

Some published radiation results

<u> </u>	<u>Material</u>	<u>Br (T)</u>	<u>Hcj (kA/m)</u>
	VACODYM411	1.00	3260
	VACODYM400	1.10	2470
	VACODYM396	1.15	2150
	NEOMAX-32EH	1.11	2387
	NEOMAX-35EH	1.17	1989
	NEOMAX-44H	1.36	1273
0	CORMAX2300	0.93	796

Reprinted from Nucl. Instrum. Meth. Phys. Res. A, Vol. 467-468, T. Bizen et al., "Demagnetization of undulator magnets irradiated by high energy electrons", pp. 185-189 (2001), with permission from Elsevier.

Shin-Etsu magnet grades

N39SH from Shin-Etsu was used for the prototype undulator, but newer and better magnet grades are now available

Neomax magnet grades

Neomax 38VH is equivalent to Shin-Etsu N39UH

Range of Magnetic Properties of each NEOMAX Material

Office of Science U.S. Department of Energy

Newest grade availability / cost

- Neomax gave us quotes for 42AH and 44AH on a recent (summer 2004) magnet procurement.
- Cost was ~25% higher than for 38VH.
- Delivery schedule was 90 days longer (240 days vs 150 days).
- These grades require an ingredient that presents availability challenges.
- Neomax is presently challenged to meet customer demand; they are expanding production capability

Heat treatment can improve NdFeB resistance

Radiation effect on 35EH magnets after different bake times at 142°C.

Longest bake is 24 hrs.

(Reprinted from Nucl. Instrum. Meth. Phys. Res. A, Vol. 515, T. Bizen et al., "Baking effect for NdFeB magnets against demagnetization induced by high energy electrons", pp. 850-2 (2003), with permission from Elsevier.)

Compare Sm₂Co₁₇ and Nd₂Fe₁₄B

SmCo magnets

- SmCo magnets were considered for the LCLS undulator
- More resistance to radiation
- But weaker magnetically
- More brittle to handle
- Long-lived activation
- We have no experience with it (yet)

The decision was made to opt for the known material, NdFeB.

