LCLS Undulator Parameter Workshop

Performance Analysis Using RON (and some notes on the LCLS prototype) Roger Dejus and Nikolai Vinokurov ${ }^{\dagger}$
October 24, 2003
${ }^{\dagger}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
Argonne National Laboratory

A U.S. Department of Energy
Office of Science Laboratory
Operated by The University of Chicago

Outline

- Some information on the LCLS prototype
- Modified semi-analytical approach to estimate gain length and saturation length (N. Vinokurov)
- RON simulation results (gain length and sensitivity to variation of average B-field)
- Conclusions

LCLS "New" Parameters

Beam energy, E	$3.63,11.47,14.04 \mathrm{GeV}$
Beam peak current, I	3.4 kA
Beam energy spread, $\delta E / E$	$3.9 \times 10^{-4}, 1.3 \times 10^{-4}, 1.0 \times 10^{-4}$
Normalized beam emittance, ε_{n}	$1.2 \times 10^{-6} \mathrm{~m}-\mathrm{rad}$
FODO lattice, quad strength	$60 \mathrm{~T} / \mathrm{m}$
Average beta function, $\beta_{x} \sim \beta_{y}$	$10,25,30 \mathrm{~m}$
Average beam size, $\sigma_{x} \sim \sigma_{y}$	$41,37,36 \mu \mathrm{~m}$
Break length pattern	$3-3-4$
Radiation wavelength, λ_{r}	$15,1.5,1.0 \AA$
Undulator period length, λ_{w}	3.0 cm
Undulator K value	2.841
Undulator gap	$\sim 8.2 \mathrm{~mm}(\mathbf{f o r ~ N d F e B)}$
Resonance break length $(\mathrm{n}=1)$	151 mm

LCLS Prototype Undulator In the Magnetic Measurement Laboratory

Derived Horizontal Trajectory and Phase Errors at 11.47 GeV

- Measured B-field at 6.35 mm gap scaled from 13312 Gauss to 10140 Gauss
- $K=2.84, \lambda_{r}=1.5 \AA$
- Gap ~ 8.2 mm for NdFeB with remanent magnetic field $\left(B_{r}\right)$ of 1.24 Tesla
- Phase slippage for 113 periods is 3547 mm (from scaled measured field)
- Ti-core is $\mathbf{3 4 0 0} \mathbf{~ m m}$: $\mathbf{1 5 0}$ mm "extra" drift space at each break section (in addition to "3-3-4" breaks)
- "Resonance" break length is 151 mm

Model Calculated B-fields vs. Measured Values at 6.35 mm Gap

- NdFeB magnets with remanent magnetic field (B_{r}) of 1.24 Tesla
- $B(T)=B o(T)^{*} \exp \left(-q^{*}\right.$ gap $)$
- $B_{\text {effo }}=3.473 \mathrm{~T}$
$q_{\text {eff }}=0.1506 \mathrm{~mm}^{-1}$
$\mathrm{B}_{\text {peako }}=3.811 \mathrm{~T}$
$q_{\text {peak }}=0.1591 \mathrm{~mm}^{-1}$
- $\operatorname{Gap}(\mathrm{mm}) \mathbf{B}_{\text {eff }}(\mathrm{T}) \mathrm{B}_{\text {peak }}(\mathrm{T}) \mathrm{K}_{\text {eff }}$

8.00	1.0411	1.0672	2.916
8.10	1.0255	1.0503	2.873
8.20	1.0102	1.0338	2.830
8.30	0.9951	1.0174	2.787

"Old" Parameters (from CDR; 1.2 mm-mrad): Contours of Constant Saturation Length @ 1.5 Á

"New" Parameters (3-3-4 breaks; 1.2 mm-mrad): Contours of Constant Saturation Length @ 1.5 Á

FEL Gain @ 1.2 mm-mrad vs. Radiation Wavelength

FEL Gain @ 1.5 Á vs. Emittance

$\Delta K / K$ Variation from Device to Device: w/ and w/o End-Phase Corrections @ 1.2 mm-mrad and 1.5 Á

Conclusions

- The proposed changes of increased undulator gap (to ~8.2 mm and reduced K value to ~ 2.84) and increased break lengths lead to an increase in the saturation length by $\sim 14 \mathrm{~m}$ (4 undulator segments) at $1.5 \AA$ and $1.2 \mathrm{~mm}-\mathrm{mrad}$
- At shorter wavelength (<1.5 \AA) and at larger emittance (> 1.2 mm -mrad), the saturation length increases even further
- The increase of the average β-function (decrease of the quadrupole gradient to $\sim 60 \mathrm{~T} / \mathrm{m}$) only marginally increases the saturation length (~ 2 m) at $1.5 \AA$
- The undulator end-gap adjustments for end-phase corrections are able to compensate undulator magnetic field amplitude variations of $\sim 10^{-3}$

