LCLS Undulator Parameter Workshop

Performance Analysis Using RON (and some notes on the LCLS prototype) Roger Dejus and Nikolai Vinokurov [†] October 24, 2003

[†] Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

Argonne National Laboratory

Office of Science U.S. Department of Energy A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

- Some information on the LCLS prototype
- Modified semi-analytical approach to estimate gain length and saturation length (N. Vinokurov)
- RON simulation results (gain length and sensitivity to variation of average B-field)
- Conclusions

LCLS "New" Parameters

Beam energy, E	3.63, 11.47, 14.04 GeV
Beam peak current, I	3.4 kA
Beam energy spread, $\delta E/E$	3.9x10 ⁻⁴ , 1.3x10 ⁻⁴ , 1.0x10 ⁻⁴
Normalized beam emittance, ε_n	1.2x10 ⁻⁶ m-rad
FODO lattice, quad strength	60 T/m
Average beta function, $\beta_x \sim \beta_y$	10, 25, 30 m
Average beam size, $\sigma_x \sim \sigma_y$	41, 37, 36 µm
Break length pattern	3-3-4
Radiation wavelength , λ_r	15, 1.5, 1.0 Å
Undulator period length, λ_w	3.0 cm
Undulator K value	2.841
Undulator gap	~ 8.2 mm (for NdFeB)
Resonance break length (n=1)	151 mm

LCLS Prototype Undulator In the Magnetic Measurement Laboratory

Derived Horizontal Trajectory and Phase Errors at 11.47 GeV

- Measured B-field at 6.35 mm gap scaled from 13312 Gauss to 10140 Gauss
- K = 2.84, λ_r = 1.5 Å
- Gap ~ 8.2 mm for NdFeB with remanent magnetic field (B_r) of 1.24 Tesla
- Phase slippage for 113 periods is 3547 mm (from scaled measured field)
- Ti-core is 3400 mm: ~ 150 mm "extra" drift space at each break section (in addition to "3-3-4" breaks)
- "Resonance" break length is 151 mm

Office of Science

U.S. Department of Energy

Model Calculated B-fields vs. Measured Values at 6.35 mm Gap

- NdFeB magnets with remanent magnetic field (*B_r*) of 1.24 Tesla
- B(T) = Bo(T)*exp(-q*gap)
- $B_{effo} = 3.473 \text{ T}$ $q_{eff} = 0.1506 \text{ mm}^{-1}$ $B_{peako} = 3.811 \text{ T}$ $q_{peak} = 0.1591 \text{ mm}^{-1}$
- Gap(mm) $B_{eff}(T) B_{peak}(T) K_{eff}$ 8.00 1.0411 1.0672 2.916 8.10 1.0255 1.0503 2.873 8.20 1.0338 1.0102 2.830 8.30 0.9951 1.0174 2.787

"Old" Parameters (from CDR; 1.2 mm-mrad): Contours of Constant Saturation Length @ 1.5 Å

"New" Parameters (3-3-4 breaks; 1.2 mm-mrad): Contours of Constant Saturation Length @ 1.5 Å

FEL Gain @ 1.2 mm-mrad vs. Radiation Wavelength

FEL Gain @ 1.5 Å vs. Emittance

ΔK/K Variation from Device to Device: w/ and w/o End-Phase Corrections @ 1.2 mm-mrad and 1.5 Å

Conclusions

- The proposed changes of increased undulator gap (to ~ 8.2 mm and reduced K value to ~ 2.84) and increased break lengths lead to an increase in the saturation length by ~ 14 m (4 undulator segments) at 1.5 Å and 1.2 mm-mrad
- At shorter wavelength (< 1.5 Å) and at larger emittance (> 1.2 mm-mrad), the saturation length increases even further
- The increase of the average β-function (decrease of the quadrupole gradient to ~ 60 T/m) only marginally increases the saturation length (~ 2 m) at 1.5 Å
- The undulator end-gap adjustments for end-phase corrections are able to compensate undulator magnetic field amplitude variations of ~ 10⁻³

