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Magnetic Spectroscopy of Functional Materials

•  Magnetic contrast with CP x-rays

• The needs, the tools

• Best permanent magnets

• Giant magnetocaloric materials
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• Element- and orbital specific (resonance)

• Separation of Sz, Lz (sum rules)

• Resonant scattering adds Q dependence 
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Permanent Magnets: Evolution brings complexity
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Modern magnets and the Rare-Earth role

  Recipe for a good magnet:

• Large magnetization (pack high density of magnetic ions).

• Large coercivity (“magnetic hardness”, add rare-earth ions).



Modern magnets and the Rare-Earth role

Spin Orbit
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• Aspherical 4f orbitals interact with surrounding electrons (crystal field).

• Spin-orbit coupling + crystal field determine preferred spin orientation,

“pinning” the magnetic moments.

Rare-Earths:

 4f electrons
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Rare-earth Nd ions are simultaneously present 

in two different crystalline environments. 

What are their roles?

Nd2Fe14B: Best in its class

• Fe: ~ 31 μB/f.u; Nd: ~ 6  μB/f.u. (element-specificity)

• Magnetocrystalline anisotropy [001] dominated by Nd RE ions.
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Exploiting the crystal’s symmetry for site separation
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Beamline 4-ID-D, Advanced Photon Source

• Resonant diffraction at fix Q: scan ID gap, monochromator, phase plate, and

sample angles with E.  Digital lock-in detection of (IL - IR)/(IL+IR).
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• (110) and (220) reflections probe element 

  and site-specific magnetism.

Im fc fm[( ˆ k i ˆ m ) + ( ˆ k f ˆ m )cos2 ]
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Theoretical calculations (M. van Veenendaal, NIU-ANL)

CEF parameters M. Yamada et al (1988).
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• Only one Nd site responsible for magnetic hardness.

• Replace “faulty” ions with other RE ions, or even Gd (isotropic).

Manipulate magnetic hardness by atomic engineering

Phys. Rev. Lett. 95, 217207 (2005)
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Giant magneto-caloric material Gd5(SixGe1-x)4

Pecharsky and Gschneider 

Advanced Materials 13, 683 (2001).
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• First-order magneto-structural transition yields large magnetic and structural 

 entropy changes that can be harnessed for magnetic refrigeration.

• Transition temperature can be tuned with Si doping to near RT.



Pecharsky and Gschneider

Advanced Materials 13, 683 (2001).

What is the role of Ge in mediating inter-layer exchange interactions?

Why does Si doping enhance magnetic ordering?

Gd
Ge Jij



Direct Exchange
(overlap)
 Pauli 1925, Heisenberg 1926

Superexchange
(overlap non-magnetic ion)
 P.W. Anderson 1950

Indirect Exchange
(conduction electrons)
Ruderman and Kittel 1954

• Since Ge is non-magnetic, SE is believed to be responsible.

Ge
Gd

What is the role of Ge in mediating Gd-Gd exchange interactions?

• No direct exchange interaction between Gd 4f electrons (atomic-like).



Is Ge really non-magnetic? 
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• Ge K- XMCD comparable to Fe,Co,Ni, but Ge is 3d10.



Is Ge magnetism tied to Gd magnetism and to the structural

transition; i.e. intrinsic?
Gd5(Si0.125Ge0.875)4



Is Ge magnetism tied to Gd magnetism and to the structural

transition; i.e. intrinsic?
Gd5(Si0.125Ge0.875)4

 Gd 5d- Ge 4p hybridized band 

 mediates indirect exchange?



DFT calculations (Y. B. Lee, B. Harmon- Ames)

30%+0.23+0.341GdGe2

100%-0.06-0.033Ge2

15%-0.038-0.033Ge1

 (%)MonoOrtho

Sz (μB) for Ge 4p, Gd 5d 

Ge2 GdGe2

Bond breaking reduces the overlap of Gd 5d wavefunctions

across disconnected slab Jij P5d i k |P5d j k

k
PRL 98, 247205 (2007)



PRL 98, 247205 (2007)
DFT calculations validated by XMCD data.

Why does Si doping enhance Tc?



GdSiGe

Cu

Ruby

Powder mixture

In Si-oil (1:1:15 by volume)

Review of Scientific Instruments 78, 083094 (2007)





Enhanced magnetic order with Si doping is volume-driven

        Increased overlap enhances indirect exchange
Tseng et al., PRB 76, 014411 (2007)



… but … for the same macroscopic volume change Tc increases

X3 faster with Si doping than with pressure…

( Tc /Tc )x,P /( V /V )x,P

Gd/Ge

Si
( V /V )local > ( V /V )macroscopic

We postulate that compressed local regions around Si act as efficient

FM exchange pathways and stabilize FM order faster than a smaller uniform

compression of the lattice.

Tseng et al., PRB 76, 014411 (2007)



Future directions

• Extend energy range of CP x-rays to 2.5-3.5 keV to include L2,3 edges of 4d

elements and M2,3 edges of 5d elements.

Pd

Au

Apple-type undulator

• Improve focusing capabilities to enable 1 Mbar XMCD experiments.
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