EPICS Collaboration Meeting 2018

NSLS-II new BPM status and Xilinx Zynq FPGA ARM embedded epics IOC

June 11-15, 2018 K. Ha and controls/diagnostics group

Outline

NSLS-II Operation status

NSLS-II RF-BPM and system configuration overview

New zBPM overview

Hardware specification

Functional overview and beam measurement result

Zynq embedded IOC

Future plan

NSLS-II Operation status

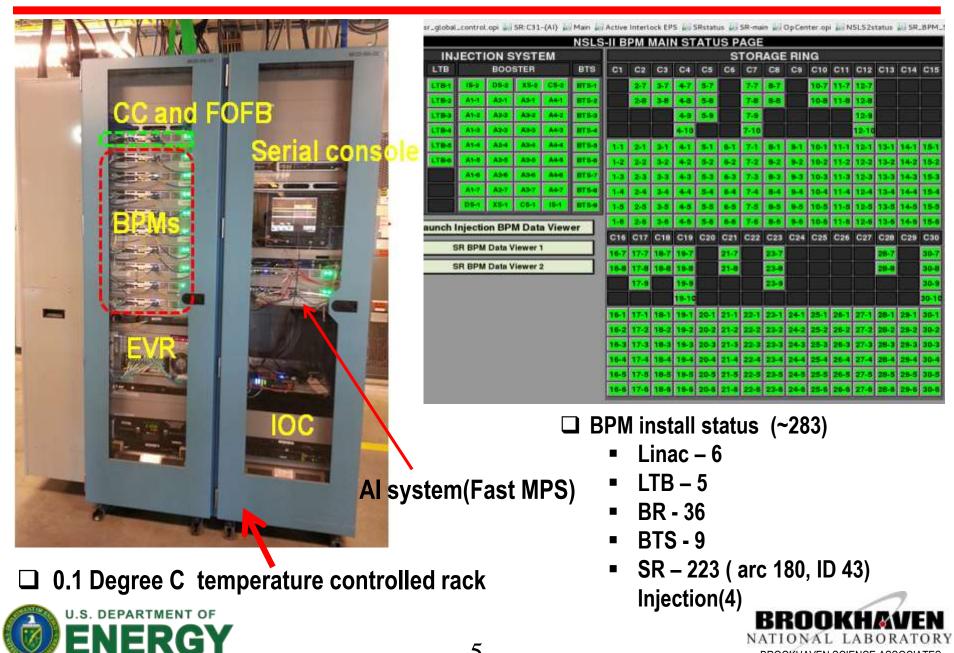
in tipe, sruptola, control up an SR CS1-(Ar) an Main an Active Interfack EPS an SRistanus an SR main an OpCenter op an MSLS2status II 06/01/2018 08:38:18 ms. _ 55-11 **Operating Status** OP-CT (ROC upsum) TOD Storage Ring Status FrontEnds Enabled DEVOLUTION OF 18-18 2016/06/01 OF 18-18-87 Beam Current (mA) Shutters 375.5 Enabled Notice Beam Lifetime (Hr) 0.0 Stable 1.D required on B740 Floor including Accelerator Tunnels, 15B, onditions NSLS-II Friday Lunchtime Seminars held on Fridays 12 noon in LOB3 rm156 **Operating Mode: Beamline Operations** Pizza available on fridays in 743 Lobby for \$2 per sice Beam is available - TopOff running TES Disable Short-term Operation Plan Stored Beam Current and Lifetime PPS Testing scheduled on Monday, June 18 followed by Studies Maintenance scheduled on June 19-20 Disable Weekly Schedule 18:00 02:00 05-01 12:00 2018-05-31 Saturday/Sunday, May 26-27: Beam Studies Magnet Power Supplies RF Vacuum Feedback Monday, May 28: Beam Studies Tuesday, May 29: 375mA Beamine Operations at 08:00 Wednesday, May 30: 375mA Beamline Operations Injector Status Thursday, May 31: 375mA Beamine Operations Linac Booster SR Injection Injection Mode Friday, June 1: 375mA Beamine Operations Next rection: 89 Saturday/Sunday, June 2-3: 375mA Beamline Operations 06/01/2018 08:38:18 Floor Coordinators Ext: 5046 Control Room x2550

- Operation started Feb, 2015
- Operation two super conducting RF cavity
- 21 Beamlines operation for user service
- Beam up time in 2017 ~ 97 %
- 400 mA top-off injection will start this July

NSLS-II RF-BPM

- August 2009 established BPM development team
- Fully in housed developed (2009~2013) and installed 283 units
- Design concepts:
 - Xilinx Vertex-6 FPGA device
 - Compact and modern technology RF receiver board
 - Same DFE board designed for the Cell controller and AI system
 - DFT algorithm for beam signal processing (The new firmware support DFT, CIC and FIR for 10 kHz)
 - A model-based design used System generator toolbox
 - Employed an Embedded EVR
 - Bidirectional 5 Gbps GTX data communication for the FOFB and fast machine protection(AI)
- Support two(2) Gate signal processing function(Beam processing and user interested bunch processing or online lattice characterization)
- Multiple sinewave driving for accelerator system fast response/bandwidth measurement
 - 0 2 kHz sinewave driving throw the local and global SDI links
- Post Mortem (ADC sum, TBT:x,y,sum, FA:x,y,sum)
- TBT Glitch detection

U.S. DEPARTMENT OF


- Remote firmware upgrade
 - Other operation related functions

RF BPM Rack and CSS main screen for operation

BROOKHAVEN SCIENCE ASSOCIATES

Why we need new development

Not system performance issue, satisfied all the requirements, performance for beam Ops

- Contributed a lot of valuable publications based on NSLS-II BPM (Physics review, NIM, many other conferences)
- Support two gate mode (beam operation and online lattice measurement)
- Support PM, glitch detection (diagnostics propose)
- Multiple sin/cos waveform driver for fast/slow corrector excitation (AC LOCO and BBA)
- The NSLS2 machine is stable and keeps continued going development work
- Already nine(9) years from the development to operation
- Virtex-6 FPGA was obsolete a few years ago
- Xilinx released advanced FPGA model (Zynq, Kintex, Vertax Ultrascale+pulse)
- Expended a new application (BxB BPM, BxB feedback, Cell controller, AI and beamline applications)
- Implement new algorithms for improving performance
 - Multi gate signal processing function
 - Digital signal processing (DFT, DDC)
 - Single bunch multi harmonic processing for improve resolution

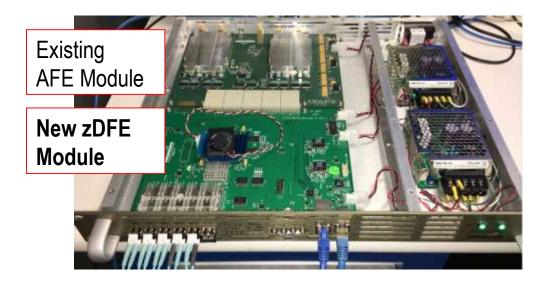
Motivation for BPM upgrade to zBPM

• Existing RF BPM DFE

- The soft-core MicroBlaze processor has limited performance and poor network performance.
- Xilkernel OS is a non-standard, Xilinx specific, bare-metal operating system with limited support.
- LwIP TCP/IP light version
- Software development requires special knowledge of Xilkernel OS features

zDFE Improvements

- Hard dual-core ARM A9 processor
- provides >500 Mbit/sec throughput
- Runs standard Debian based Linux Operating System
- Embedded IOC or standalone apps
- Software development is now user space applications similar to software development on a standard Linux environment.
- Better solutions for long term maintainability and software development
- Allow developers easier access to maintain and upgrade software and features.
- Provides more an FPGA resources and excellent development tools (VIVAOD)



zBPM prototype

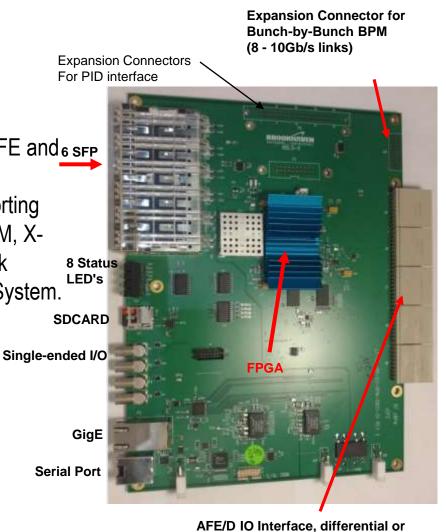
Specs:

- 1 U size Chassis
- 500 nm turn-by-turn (TBT)
- 100 nm in 10 kHz (FÀ)
- 200nm Long Term Stability /8hrs in 10Hz (SA)
- Verified with beam
- TbT used for injection & kicked beam studies
- FA for fast orbit feedback & interlocks
- SA for orbit measurements, System Health

NATIONAL LABORATORY

BROOKHAVEN SCIENCE ASSOCIATES

Data Type	Mode	Max Length
ADC Data	On-demand	100Mbytes or 12M samples raw ADC per channel simultaneously
ТВТ	On-demand	100Mbytes or 2M samples TbT (Frev=378KHz) A,B,C,D,S,X,Y
FOFB 10KHz	Streaming via SDI Link and On-demand	100Mbytes or 2M samples FA (10KHz)Streaming - X,Y,SUM ; On-Demand: A,B,C,D,S,X,Y
Slow Acquisition 10Hz	Streaming and On-demand	buffer SA (10Hz)
System Health	Streaming	AFE temp, DFE temp, FPGA Die temp, PLL lock status, SDI Link status
U.S. DEPARTMENT	OF	BBOOKHAVE

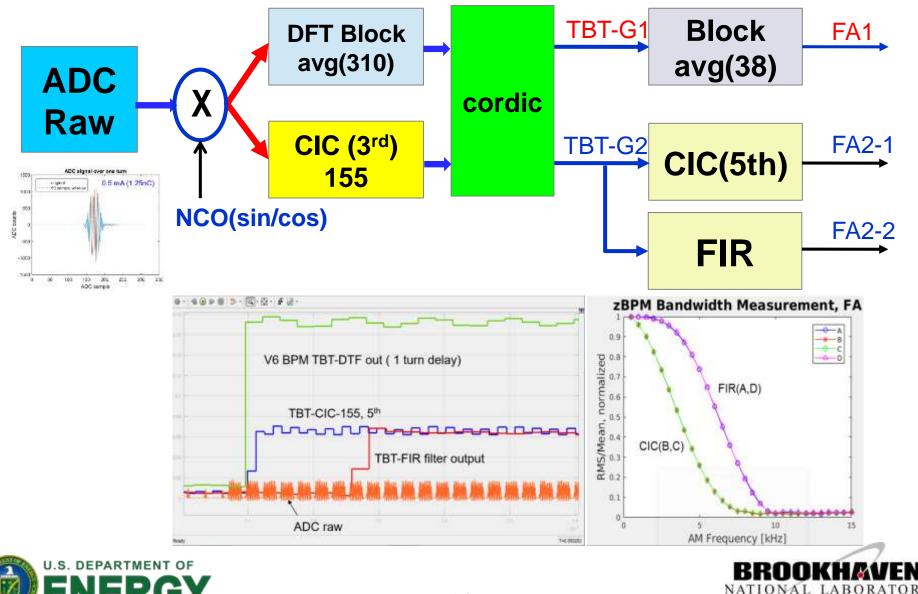


Zynq DFE board

9

□ Features/Benefits:

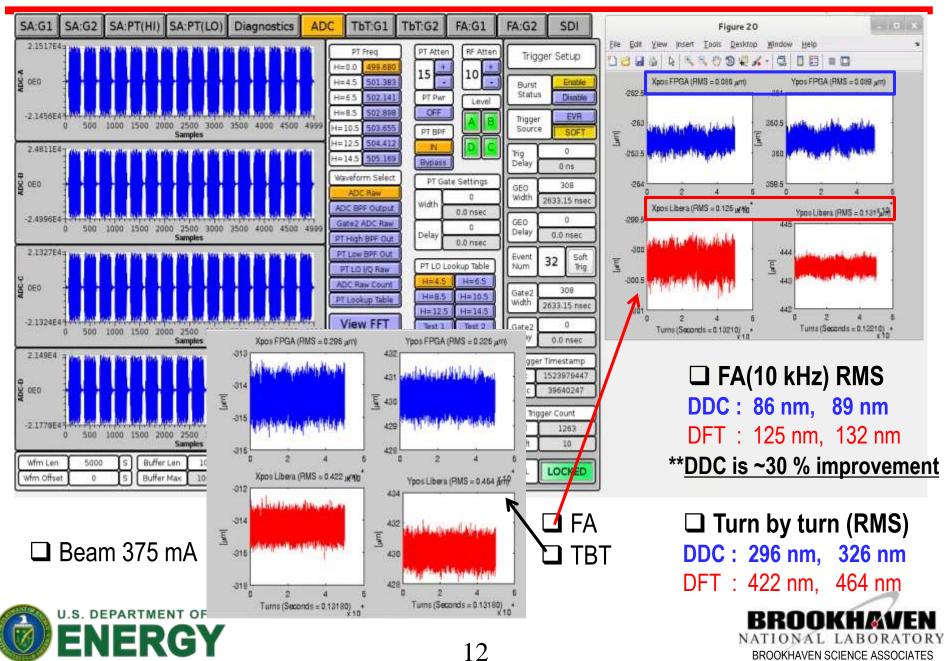
- Powerful ARM base processing
 PL: Programmable logic, PS: Processing system
- Hardware is backward compatible, use existing AFE and 6 SFP enclosure to minimize upgrade effort and cost
- NSLS2 standard to common DFE platform, supporting multiple sub-systems including: RFBPM, BbB-BPM, X-Ray BPM, Cell Controller for Fast Orbit Feed-Back
- Runs standard Debian-7 based Linux Operating System.
- 8 ports 10 Gbps GTX, 6 ports 10 Gbps SFP



single ended

FPGA firmware signal processing and filter response

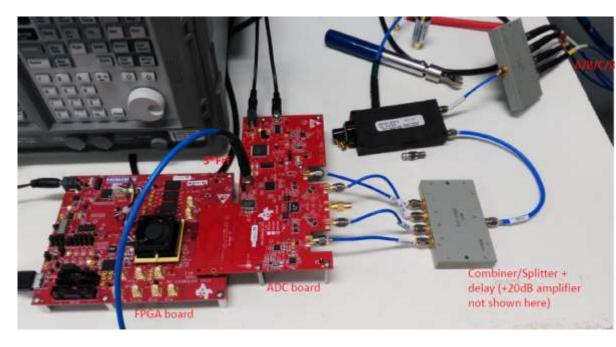
ATIONAL LABORATOR BROOKHAVEN SCIENCE ASSOCIATES


What's new for ZYNQ IOC

- Dual ARM Cotex-9 core 666 MHz
- Debian-7 ARM Linux
- Base 3.15.5
- Booting from 32 Gbyte micro SD-Card
- DMA Kernel driver for the large waveform access
 - Up to 300 Mbyte
- Not used special custom driver/record support
- aSub array record for waveform collection
- Standard epics soft recodes
 - WAVEFORM, AI, AO, BI, BO, LONGIN, LONGOUT, MBBI, MBBO
- Control system network bandwidth ~ 60 Mbyte measurement with NSLS2 gateway box

CSS top panel and Beam measurement (attenuator 10 dB)

Embedded small scale IOC for Operation


- Stable running several month
- Total memory size is 1 Gbyte
- Allocation memory logic side up to 300 Mbyte
- Linux system memory available up to 900 Mbyte
- CPU usage 20% user, 2.7 % system
- Free memory space is 770 Mbyte
- NSLS-2 operation, most diagnostics IOC need to support more than 35 client

Future plan based on zDFE and zynq U+ rfsoc

- Direct bunch to bunch measurement
- ■JESD204B 10Gbit serial interface and TBT, FA calculation
- I4-bit 4 channel 500 Mhz BxB BPM development (prototype coming soon)
- Beam tested with high speed ADC evaluation board (TBT 0.6um)

BROOKHAVEN SCIENCE ASSOCIATES

Raw ADC Data

1000

Summary

- NSLS-2 existing BPM hardware developed 2009 ~ 2011
- 2011 ~ 2014 Installed and commissioning the Linac/Booster/BTS injector and SR
- SR beam operation start since 2015 and stable operation
- RFBPM zDFE board is completed, and fully functional for NSLS-II application
- 10 Gbps transceivers will support future development for the BxB bpm.
- Improved performance use the CIC/FIR filter
- Use of Newer Xilinx/Vivado development environment and embedded epics IOC
- Installed zBPM prototype for performance measurement
- Expanded support for Pilot Tone(PT) signal processing for active calibration.
- Expanded application for the Cell controller, AI system, BxB BPM&Feedback system as well as beamline applications

Thank you for your attention!

Questions and comments are welcome.

V6 DFE board

DFE also serves as :

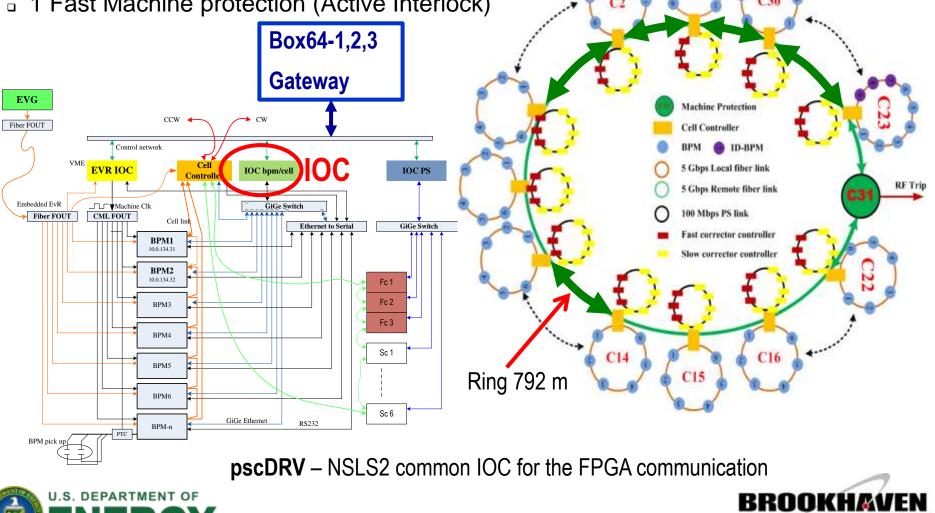
- Virtex-6 FPGA
- Embedded MicroBlaze soft core processor running TCP/IP IwIP stack in conjunction with TEMAC Ethernet core
- 2Gbyte DDR3 SO-DIMM
- Memory throughput
 6GBytes/sec
- (6) 6.5Gbps SFP modules
- Fixed Point DSP Engine
- 1Gbit FLASH memory
- Embedded Event Receiver

Cell Controller for Fast Orbit Feedback

Al system for Fast machine protection

NSLS-II BPM

Data Type	Mode	Max Length	
ADC Data	On-demand	256Mbytes or 32M samples per channel simultaneously	
Turn-by-Turn (TbT), Frev=379 kHz	On-demand	256Mbytes or 5 M samples Va,Vb,Vc,Vd, X,Y,SUM, Q, pt_va,pt_vb,pt_vc,pt_vd	
Fast Acquisition (FA) , 10KHz	Streaming via SDI Link & on demand	Streaming - X,Y,SUM; For on demand: 256 Mbytes or 5 Msamples. Va,Vb,Vc,Vd, X,Y, SUM, Q, pt_va,pt_vb,pt_vc,pt_vd	
Slow Acquisition (SA), 10Hz	Streaming and On-demand	80hr circular buffer Va,Vb,Vc,Vd, X,Y,SUM, Q, pt_va,pt_vb,pt_vc,pt_vd	


- Development started August 2009
- First Beam Test at LBNL on ALS June 2010
- All requirements demonstrated February 2011
- Booster complete March 2012
- Storage Ring complete June 2013
- SR commissioning complete May 2014

Global hardware system configuration

- 3 tier network configuration
- 30 diagnostics IOCs(IBM System x3550 M3)
- 30 Cell Controller (FOFB)
- 1 Fast Machine protection (Active Interlock)

LABORA

BROOKHAVEN SCIENCE ASSOCIATES