

The APS Upgrade

John Carwardine

APS Upgrade Deputy Associate Project Manager - Accelerator Argonne National Laboratory

June 13, 2018

The Advanced Photon Source: BES's largest user facility

- APS is an xray microscope
 - In operation since 1995
 - 7 GeV electron synchrotron
 - 1104m circumference
 - Hard xrays: 1KeV 100KeV
- 68 simultaneously operating end stations
- 5000 operating hours/year, 98% availability
- FY17: 5700 unique users, 700 institutions
- FY17 operating budget: \$134M

To stand still is to lose ground

Brightness and coherence scale inversely with emittance

Reducing emittance from 3100 pm-rad (APS) to 42 pm-rad (APS-U)

- \Rightarrow 2 orders of magnitude higher brightness and transverse coherence
- \Rightarrow smaller spot size for microprobes
- \Rightarrow round beams
- \Rightarrow New science capabilities

Emittance scaling

APS - 7 GeV, 2-bend lattice

APS-U Project Scope

APS-U 42-pm Lattice

- Storage ring consists of 40 Sectors. Each with 33 arc magnets; 27.6 meters / sector
- Each sector is a hybrid 7BA with four longitudinal-gradient dipole bends, three transverse-gradient dipoles, and six reverse bends.
- Vacuum systems integrated with magnets, supports, insertion devices, front ends.

APS Upgrade Project Schedule

APS-U Technology

L-Bend Magnets (M1, M2)

In-House Design Fast Bipolar Power Supply*

Q-Bend Magnets M3,M4

Exploded view of planar SCU design model with vacuum chamber

Prototype Stripline Kicker used for successful BTX Beam Tests

The APS Upgrade (J. Carwardine) - EPICS Collaboration Meeting, June 2018

Fast Bunch Swap-Out Injection

gonne 🛆

* Courtesy Z. Conway etal, ANL-PHY

MBA Control System constraints and challenges

- Control system design retains the underlying APS controls infrastructure
- Enhancements are driven by APS-U technical system needs
 - Ubiquitous embedded IOCs, FPGA-based controllers, network appliances
 - Substantial increase in number network ports
 - Substantial increase in data volume and throughput requirements
- Commissioning time is short for Controls + Integrated Tests + full MBA
 - Must be completely integrated/tested/debugged very soon after installation
 - All tools must be debugged and ready
 - Requires expedient troubleshooting tools
 - Early deployment of "virtual accelerator systems" with production PV names
 - Early development of integrated tests (using the virtual accelerator and test stands)
- Will need to draw upon the numerous 'modern' tools developed by the EPICS community

Major challenge – 12-month dark-time schedule

ТАЅК	Removal		Installation							Commissioning				Float
	Month 1	Month 2	Month 3	Month 4	Month 5	Month 6	Month 7	Month 8	Μ	lonth 9	Month 10	Month 11	м	Ionth 12
Remove IDs and front ends														
Remove mezzanine electronics														
Remove magnet girder assemblies														
Prepare tunnel surfaces														
Install magnet modules														
Install mezzanine electronics														
Install front ends														
Install insertion devices														
Integrated system testing w/o beam														
Accelerator Readiness Review														
Commissioning														
Float														

- 3-month beam commissioning phase begins in Month #9
- Control System will be expected to be ready from the moment it's needed
- Transferring Controls interfaces from existing technical systems to new will be a daunting task (~500,000 PVs, over 21 new systems)

From PDR MBA Control System Scope

Argonne 🐴

DAQ Use Case: Monitoring SR Injection

APS-U fast orbit feedback

APS-U Orbit feedback Integrated R&D

Fast orbit feedback system parameters

Present system (circ. 1995)

Parameter	APS-U design	'Datapool'	RTFB			
Algorithm implementation	'Unified feedback' algorithm	Separate DC and AC systems for slow and fast correctors				
BPM sampling & processing rate	271 kHz (TBT) 🗸	10 Hz	1.5 kHz			
Orbit correction update rate #	22.6 kHz 🖌	10 Hz	1.5 kHz			
Signal processors (20 nodes) (one node demonstrated)	DSP (320 GFLOPS) + FPGA (Virtex-7)*	EPICS IOC	DSP (40 MFLOPS)			
Num. rf bpms / plane	570 *	360	160			
Fast correctors / plane	160 *	-	38			
Slow correctors / plane	320 *	282	-			
Fast corrector ps bandwidth	10 kHz 🖌	-	1 kHz			
Fast corrector latency	<10 us 🗸 🗸	-	~250 us			
Closed-loop attenuation bandwidth	DC to 1 kHz**	DC - 1 Hz	1 Hz - 80 Hz			
# Highest demonstrated at	Demonstrated					

Highest demonstrated at any light-source to date

* Full double-sector demonstrated

** >800 Hz has been demonstrated

The APS Upgrade (J. Carwardine) - EPICS Collaboration Meeting, June 2018

Wrap-up

- The APS-U lattice design has the lowest horizontal emittance of all synchrotron light sources currently under consideration (42 pm-rad)
- APS will continue operating until mid FY2022
- APS-U is due to come on line in FY2023 after a 12-month shutdown
- APS-U R&D program has been very successful (for Controls and others)
- Early procurements are underway (magnets, power supplies,...)
- There are many challenges (for Controls and others)
- We have funding (FY2018 budget = \$93M)

