
Open Source Event Receiver

Open Hardware Workshop EPICS Meeting
Argonne, June 2018

Jukka Pietarinen
Micro-Research Finland Oy

Open Source Event Receiver - Introduction

● What is the Open Source Event Receiver
– Basic building block required to build devices receiving the
MRF Timing protocol including but not limited to Delay
Compensation capability

● What is it not
– it is not a replacement frmware for current MRF products
– it is not a complete Event Receiver with MRF product
compatible register map

● No bus/register interface
● No pulse generators
● etc.

Open Source Event Receiver - Requirements

● Hardware
– Xilinx Kintex-7 based FPGA with GTX transceivers ONLY!
– Zynq 7Z030 is Kintex-7 based
– SFP Transceiver
– Reference clock for GTX
– Example design built for

● Avnet PicoZed 7Z030
● Avnet PicoZed FMC Carrier Card V2

● Software
– Xilinx Vivado 2017.4 (Free WebPack version is sufcient)

● Xilinx programming cable
– e.g. Platform Cable USB II

Avnet PicoZed FMC carrier with 7Z030 SOM

● Avnet PicoZed AES-Z7PZ-7Z030-SOM-G
● Avnet PicoZed FMC carrier AES-PZCC-FMC-V2-G

● Zynq 7Z030 incorporates
● Kintex-based FPGA core
● Four GTX transceivers
● Dual-core ARM Cortex-A9

● This kit has everything from the hardware point of view to be used as an event
receiver

Open Source Event Receiver - non-DC mode

Reference Design Structure

zynq_top.vhd - Design top level
evr_dc.vhd - Event Receiver top level

transceiver_dc_k7.vhd - GTX Transceiver instantiation
delay_measure.vhd - Delay measurement

average.vhd
delay_adjust.vhd - DCM control

databuf_rx_dc.vhd - Segmented data bufer receiver
evr_pkg.vhd
buf_bsram.vhd

zynq.xdc - Constraints fle

Open Source Event Receiver

Clocks, reset

Receiver signals

Transmitter signals

Delay compensation
signals

Distributed bus

Databuf bus

Event bus

Minimum Confguration

● Connect reference clock to one reference clock input
MGTREFCLKx_P/N

● Connect system clock to sys_clk
● Connect transceiver receive signals to MGTRX_P/N
● Tie databuf_rx_mode and databuf_tx_mode high ‘1’
● Tie dc_mode low ‘0’ (non-DC mode)
● Set delay_comp_target to a fxed value 0x00000000, this value
can be used to fne tune the “group delay” of the whole EVR. In
non-DC mode this value sets depth of the EVR input FIFO.

● Tie other (unused) inputs low ‘0’

Receiving Events

if rising_edge(event_clk) then
if event_rxd = X”01” then

-- event code X”01” received
end if;

end if;

● Event codes are presented on event_rxd in event_clk clock
domain

● When event_rxd is not 0x00 there is an active event code
● link_ok can be used to check link status

Receiving Distributed Bus Bits

● Distributed bus bits presented on dbus_rxd in event_clk
clock domain

● When databuf mode is enabled dbus_rxd is updated every
other clock cycle, when databuf mode is disabled dbus_rxd is
updated every clock cycle

● link_ok can be used to check link status

Databuf bus

● Databuf bus is used to transfer data packets on databuf_rxd,
databuf_rx_k, databuf_ena in event_clk clock domain

● Databuf mode has to be enabled

Sending Events

● Event codes are presented on event_txd in refclk clock
domain

● When event_txd is not 0x00 the event code is sent out on
the rising edge of refclk

Open Source Event Receiver - DC mode

Adding delay compensation

Bus interface

Databuf interface

Delay compensation signals

● delay_comp_update has to be connected to
delay_comp_update of the evr_dc block

● delay_comp_rx has to be connected to delay_comp_value
of the evr_dc block

Building Reference Design with Vivado
● Getting Sources

– git clone https://github.com/jpietari/mrf-openevr
● Building Vivado project

– cd mrf-openevr
– vivado -mode tcl

● Vivado% source ./openevr.tcl
● Vivado% quit

● Synthesis/implementation/creating bitstream
– Launch vivado in GUI mode

● Vivado
– Open project openevr/openevr.xpr
– Generate bitstream

● FPGA confguration
– Hardware manager
– connect to target
– download

https://github.com/jpietari/mrf-openevr

Reference Design Features
● LEDs

– LED1 (D6), rx_violation
– LED2 (D7), link_ok
– LED3 (D8), fashed quickly on received 0x01 event code
– LED4 (D9), fashes slowly

● Pushbuttons
– SW1 (N), rx_clear_violation
– SW2 (S), tx_reset
– SW3 (E), sys_reset

● The event link can be looped back to itself (connect fber patch cable from SFP TX to
SFP RX)
– however due to GTX internals and running the transmitter and receiver from the
same clock source you will need to press tx_reset several times before link gets
established, this applies only to self-loopback. Theoretically, chances of
establishing link is 1/20th resets.

● Sending out event code 0x01 at a fxed rate, few Hz, received event shows on LED3
(D8)

● Two integrated logic analyzer (ILA) cores instantiated

Avnet PicoZed FMC Carrier V2 Board Reference Clock

● Avnet PicoZed FMC Carrier V2 has a programmable IDT 8T49N242
clock synthesizer.
– Confguration resides on an EEPROM
– Reference design available from Avnet to program EEPROM

● Software Tools
– IDT Timing Commander
– IDT 8T49N24x Timing Commander Personality File
– Xilinx Vivado and SDK 2010.4 (exact version required)

● Getting Sources
– http://picozed.org/support/design/13076/106
– Transceiver Clock Programming Reference Design

http://picozed.org/support/design/13076/106

IDT Timing Commander

IDT Timing Commander

Copy table as a new confguration to fle
C:\Avnet\hdl\Projects\pz_fmc2_valtest\software\pzcc_iic_eeprom_test\src\iic_eeprom_demo.c
Follow instruction in PizoZed_FMC2_Carrier_IDT_Clock_Programming_RefDes_2010_4.pdf

Evaluation Board Reference Clock

● Launch Vivado 2010.4
– Open Project C:/Avnet/hdl/Projects/pz_fmc2_valtest/PZ7030_FMC2
– Generate Bitstream

● Launch SDK 2010.4
– Select Workspace C:\Avnet\hdl\Projects\pz_fmc2_valtest\PZ030_FMC2\
pz_fmc2_valtest.sdk

– Xilinx Tools - Program FPGA, Click Program
– Right-click pzcc_iic_eeprom_test

● Run as - Run Confgurations
– Click on Application tab
– Search: pzcc_iic_eeprom_test.elf
– Apply, Run

file:///C:/Avnet/hdl/Projects/pz_fmc2_valtest/PZ7030_FMC2

Further developments

● Adding more “bits and pieces” as confgurable “plugins”
– timestamping?
– pulse generators?
– bus interface for CPU access?

● Main idea is still to keep it as simple as possible
● VHDL is not a very convenient language for confgurable
designs - you have to use generate statements - no #ifdefs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

