
areaDetector

What’s New and What’s Next

Mark Rivers

GeoSoilEnviroCARS, Advanced Photon Source

University of Chicago

• Last update was October 2017 at ITER and

ICALEPCS in Barcelona

– areaDetector and ADCore Releases since then: R3-2, R3-3

(soon)

• Brief recap of the top items from R3-0 for those who

missed it

• Major new features in 3-2 and 3-3

• Roadmap for R4-0 and R5-0

Outline

EPICS_NTNDA_Viewer ImageJ plugin

(ADViewers R1-0)
• New ImageJ plugin written by Tim Madden and Marty Kraimer

• Essentially identical to EPICS_AD_Viewer.java except that it

displays NTNDArrays from the NDPluginPva plugin, i.e. using

pvAccess to transport the images rather than

NDPluginStdArrays which uses Channel Access.

EPICS_NTNDA_Viewer Advantages

• NTNDArray data transmitted "atomically" over the network

• With Channel Access size and data type of waveform record is

fixed at iocInit, cannot be changed at runtime.

– To view both 8-bit and 64-bit double FFT images waveform record

needs to be 64-bit double, 8X network overhead for 8-bit. pvAccess

changes the data type of the NTNDArrays dynamically at run-time.

• Channel Access requires setting

EPICS_CA_MAX_ARRAY_BYTES, considerable confusion

and frustration for users.

• NDPluginPva is 5X-10X faster than NDPluginStdArrays

• ImageJ is 1.5-2X faster with pvAccess than with Channel

Access.

NDPluginDriver (R3-0)

Multiple Threads per Plugin

• Added support for multiple threads running the
processCallbacks() function in a single plugin.

• Can improve the performance of the plugin by a large
factor. Linear scaling with up to 5 threads (the largest
value tested) observed for most of the plugins that
now support multiple threads.

• Maximum number of threads that can be used for the
plugin is set in constructor and in IOC startup script.

• Actual number of threads to use controlled via an
EPICS PV at run time, up to the maximum value
passed to the constructor.

• Note that plugins need to be modified to be thread-
safe for multiple threads running in a single plugin
object.

NDPluginScatter + V4
• Distribute file writing to multiple IOCs (4096 x 3078 8-bit)

IOCs Files/sec GB/sec

1 101.0 1.19

2 195.2 2.29

3 217.5 2.55

NDPluginPva NDPluginPva NDPluginPva

pvaDriver

NDFileHDF5

pvaDriver

NDFileHDF5

pvaDriver

NDFileHDF5

ADSimDetector

NDPluginScatter

IOC #1

IOC #2

IOC #3

IOC #4

NDArrayPool Design Enhancements (R3-3)

• Previously each plugin used its own NDArrayPool.

• Problem: not really possible to enforce the maxMemory limits for

the driver and plugin chain.

• Sum of the memory use by the driver and all plugins that matters,

not the use by each individual driver and plugin.

• NDPluginDriver base class changed to set its

pNDArrayPool pointer to the address passed to it in the

NDArray.pNDArrayPool for the NDArray in the callback.

• Ultimately all NDArrays are derived from the driver, either

directly, or via the NDArrayPool.copy() or

NDArrayPool.convert() methods.

• Thus plugins now allocate NDArrays from the driver's

NDArrayPool, not their own.

NDArrayPool Design Enhancements

• maxMemory argument to the driver constuctor now controls

the total amount of memory that can be allocated for the

driver and all downstream plugins.

• maxBuffers argument to all driver and plugin constructors is

now ignored.

• Now no limit on the number of NDArrays, only on the total amount

of memory.

• maxBuffers argument to the ADDriver and NDPluginDriver base

class constructors are still present so existing drivers and plugins

will work with no changes. This argument is simply ignored.

• maxMemory argument to the NDPluginDriver constructor is only

used for NDArrays allocated before the first callback, so it can

safely be set to 0 (unlimited).

• These changes are generally backwards compatible.

• However, startup scripts that set a non-zero value for maxMemory

in the driver may need to increase this value because all NDArrays

are now allocated from this NDArrayPool.

Active Plugin Counting and

Waiting for Plugins to Complete (R3-3)

• Previously to wait for plugins to complete before the driver indicated

that acquisition was complete then needed to set CallbacksBlock=Yes

for each plugin in the chain.

• Waiting for plugins is needed in cases like the following
• Doing a step scan and one of the counters for the step-scan is a PV from the

statistics plugin.

• Necessary to wait for the statistics plugin to complete to be sure the

PV value is for current NDArray and not the previous one.

• Doing a scan and writing the NDArrays to a file with one of the file

plugins. N

• Necessary to wait for the file plugin to complete before changing the

file name for the next point.

• Problems with setting CallbacksBlock=Yes.
• Slows down the driver because the plugin is executing in the driver thread

and not in its own thread.

• Complicated to change all of the required plugin settings from

CallbacksBlock=No to CallbacksBlock=Yes.

Active Plugin Counting and

Waiting for Plugins to Complete
• NDPluginDriver base class now does the following:

• Increments a NumActivePlugins counter in the driver that owns

each NDArray as it is queued

• Decrements the counter after the processing is done.

• All drivers have 3 new records:
• NumActivePlugins: Indicates the total number of NDArrays that

are currently processing or are queued for processing by this driver.

• WaitForPlugins: Determines whether AcquireBusy waits for

NumActivePlugins to go to 0 before changing to 0 when acquisition

completes.

• AcquireBusy: “busy” record that is set to 1 when Acquire changes

to 1. It changes back to 0 when acquisition completes, i.e. when

Acquire_RBV=0.

• If WaitForPlugins is Yes then it also waits for

NumActivePlugins to go to 0 before changing to 0.

• Should now rarely be necessary to change plugins to use

CallbacksBlock=Yes.

New records

NDFileTIFF (R3-3)

• Added support for readFile() so it is now possible to read a

TIFF file into an NDArray using this plugin and do

callbacks to downstream plugins.
• All datatypes (NDDataType_t) are supported.

• Supports Mono, RGB1, and RGB3 color modes. It also correctly

reads files written with RGB2 color mode.

• Sestores the NDArray fields uniqueID, timeStamp, and epicsTS if

they are present.

• Restores all of the NDArray NDAttributes that were written to the

TIFF file.
• Because of the way the NDAttributes are stored in the TIFF file the

restored attributes are all of type NDAttrString, rather than the

numeric data types the attributes may have originally used.

• One motivation is for NDPluginProcess to be able to read

TIFF files for the background and flat field images, rather

than needing to collect them each time it is used.

NDPluginProcess (R3-3)

• Load a dedicated TIFF plugin for the NDPluginProcess

plugin in commonPlugins.cmd.
• Used for reading background or flatfield TIFF files.

• Add an sseq record to load the background image from a

TIFF file. Executes all the following steps:
1. Saves the current NDArrayPort fo the Process plugin to a

temporary location

2. Sets the NDArrayPort to the TIFF plugin.

3. Enables ArrayCallbacks for the TIFF plugin in case they were

disabled.

4. Process the ReadFile record in the TIFF plugin. This reads the

TIFF file and does callback to the Process plugin.

5. Loads the NDArray from the callback into the background image.

6. Restores the previous NDArrayPort from the temporary location.

• Add an sseq record to load the flatfile from a TIFF file.
• Executes the same steps as for the background above, except that in

step 5 it loads the NDArray into the flatfile image.

NDPluginProcess (R3-3)
New records

NDFileHDF5 (R3-2)

• Added support for blosc compression library.
• Compressors include blosclz, lz4, lz4hc, snappy, zlib, and zstd.

• Also support for ByteSuffle and BitShuffle.

• ADSupport now contains the blosc library, so it is available for

most architectures.

• The build flags WITH_BLOSC, BLOSC_EXTERNAL, and

BLOSC_LIB have been added, similar to other optional libraries.

Thanks to Xiaoqiang Wang for this addition.

• Changed all output records in NDFileHDF.template to have

PINI=YES. This is how other plugins all work.

NDPluginFile Capture Mode (R3-2)

• Changed the way that capture mode is implemented.

• Previously it created NumCapture NDArrays using the "new" operator.

As NDArrays arrived it copied the data and attributes into these arrays.

This had several problems:
• NDArrays were not allocated from the NDArrayPool, so memory limits

were not enforced.

• Because not allocated from NDArrayPool if passed to other functions or

plugins there would be problems with attempts to call NDArray::reserve()

or release().

• The copy operation is inefficient and not a good idea.

• Changed to:
• Allocate an array of NumCapture pointers.

• As NDArrays arrive their reference count is incremented with reserve().

• NDArray address is copied to the pointer array

• After the files are written the cleanup routine now simply decrements the

reference counter with release(), rather than having to delete the NDArray.

• New scheme is much cleaner.

• May require some changes to startup scripts to increase NDArrayPool size.

NDPluginOverlay (R3-2)

• Improved behavior when changing the size of an overlay.
• Previously the Position was always preserved when the Size was

changed.

• Not the desired behavior when the user had set the Center rather

than Position.

• Code now remembers whether Position or Center was last set, and

preserves the appropriate value when the Size is changed.

• Overlays were previously constrained to fit inside the image

on X=0 and Y=0 edges.
• User may want part of the overlay to be outside the image area.

• Location of the overlay can now be set anywhere, including

negative positions.

• Each pixel in the overlay is now only added if it is within the image

area.

• Changed the cross overlay so that it is drawn symmetrically

with the same number of pixels on each side of the center.
• Actual size is 2*Size/2 + 1, =Size+1 if Size is even.

Operator displays

medm, edm, caQtDM, CSS-BOY (R3-2)

• Added ADApp/op/Makefile.
• Runs the conversion tools to convert the medm adl files to edl for edm, ui for

caQtDM, and opi for CSS-BOY.

• RULES_OPI file was added to synApps/support/configure to support this.

• If RULES_OPI file is not found the Makefile does nothing.

• If the RULES_OPI file is found then a CONFIG_SITE file in

synApps/configure or in EPICS base must define these symbols:
• ADL2EDL: path to adl2edl for edm

• ADL2UI: path to adl2ui for caQtDM

• CSS: path to css. Must be a recent version that supports the command

css -nosplash -application org.csstudio.opibuilder.adl2boy.application

• edl/autoconvert, ui/autoconvert, and opi/autoconvert directories contain new

conversions of all of the medm files.

• edl, ui, and opi directories should contain only manually tweaked files.
• Many of the files in these directories have been removed, either because they

were actually old autoconverted files, or because they are obsolete and the new

autoconverted files are better.

medm File Improvements (R3-2, R3-3)

• Good conversion requires a good medm adl file

• Text graphics widget sizes are set to the actual size of the text.
• medm will display text outside the widget if it is not large enough, but

other display managers will not.

• Text update widgets set to the correct datatype.
• medm will display an enum widget as a string even if the datatype is set

to "decimal" rather than "string", but other display managers will not.

CSS-BOYmedm

caQtDMmedm

• caQtDM comes with a good adl to ui conversion tool, no

changes needed

edmmedm

• adl2edl required changes for parallel make because it used a

hardcoded temporary file name (where to push fix?)

• Quality of conversions is poor. adl2edl needs work.

Other Changes (R3-3)

• NDArrayPool Enhancements
• Changes to allow inheriting it from derived classes. Thanks to

Sinesa Veseli for this, he will present later this morning.

• Optimization to memory allocation mechanism. Original work by

Michael Huth. I am currently modifying to use std::multiset, same

as used for plugin output sorting.

• ntndArrayConverter.cpp
• Added conversion of the NDArray.timeStamp and

NDArray.epicsTS fields from EPICS epoch (Jan. 1 1990) to Posix

epoch (Jan. 1, 1970).

• Needed because NDArrays use EPICS epoch but pvAccess uses

Posix epoch and the timestamps shown by pvGet were incorrect for

the NTNDArrays.

• 2448 x 2048 global shutter CMOS

• Sony IMX250 2/3”

• Dynamic range of 72 dB

• Peak QE of 62%

• Read noise of 2.2e-

• 12-bit, 10-bit, or 8-bit data

• Max frame rate of 162 fps

– 779 MB/S, >8X faster than GigE

• $1,875

Point Grey 10-Gbit Ethernet Camera

Oryx ORX-10G-51S5C-C

ADSpinnaker
• New driver for Point Grey GeniCAM cameras using their

Spinnaker SDK (10 GigE, GigE, USB-3)

• Currently working on Windows

• Linux requires Ubuntu 16 (gcc 5.4, special release of ffmpeg)

• Some work beginning on aravisGigE driver

• Guabao Shen at APS and Neil O’Brien at Diamond)

ADPixirad
• Added support for the PIXI-III chip

• New CountMode record to select Normal, NPI and

NPISUM count modes.

• New HitThreshold record to control the VtHit value.

Roadmap: ADCore R4-0

• Put more functionality into ADDriver base class

– Derived class would call

ADDriver::doPluginCallbacks(), which would handle

setting attributes, getting timestamp, calling plugins,

etc.

• Simplify file saving modes (no more Single,

Capture, Stream) and eliminate AutoSave

• Add flag to prevent overwriting files

Roadmap: ADCore R5-0

• Change NDArray to NTNDArray for passing data to

plugins

• Use PVDatabase

– “local” provider within IOC

– “pva” provider between IOCs

• Smart pointers automatically eliminate all unnecessary

copying

• Eliminates need for NDPluginPva

• V4 clients can immediately receive data from any point in

plugin chain

• Distribute load to multiple IOCs without pvaDriver

• Bruno Martins has demonstrated this working for

ADSimDetector and NDPluginStats

