Using Message Broker with EPICS:
SPX Controls Use Cases

Sinisa Veseli N\ N\ A ¥/
Software Engineer AN —

AES / Software Services Group

EPICS Collaboration Meetlng
October 5, 2013

v

EPICS Collaboration Meeting October 5, 2013

@ ENERGY o

eeeeee

Outline

= About SPX

= Why Use Message Broker?

= SPX Controls Software

= Performance Measurements
= Summary

Motivation

= EPICS/Message Broker Integration
= Performance Testing Results Involving EPICSv4

EPICS Collaboration Meeting October 5, 2013

About SPX

SPX: Short-Pulse X-ray project
Originally one of the major goals of the APS Upgrade (APS-U)

- Addressed the need for intense, tunable, high-repetition rate,
picosecond x-ray pulses

- Ultimate goal: deliver short (2ps) x-ray pulses at 6.5 MHz
Technically most complex part of the APS-U

- 2 cryomodules, each with 4 superconducting rf deflecting cavities
operating at 2815 MHz

- Must keep at minimum disturbance of the storage ring during user
operation

- SPXO0 Systems: 2 cavity cryomodule, used for testing

Not compatible with the recent APS-U direction (evaluating
incorporation of the Multi-bend Achromat Lattice)

EPICS Collaboration Meeting October 5, 2013

SPX0 Diagnostic Data Acquisition Option
APS Controls Subnet

) 2
Optical Spiitter
Existing Real Time Feedback Reflected Memory Link |:|
X A =
Tilt Monitor || | — | |
&BAT ||| 4BPMs 4 BPMs RTFB DAQ I0C
(BSP100) (8SP100) (B5P100) » |
[or | [Lpr] o SES Evont Link
o . X - 135KSamplesisec
8 channels @ | Y - 135KSamples/sec
TESREampleasac 3 Optical Spiitter <<OPTIONAL>> | x-ray8PMdata | 350 BPMs (x&y)
also avallable | @ 1.5K Blocksisec
{~ 4.3MByte/sec)

i

SPXO/APS Communications Interface Chassis [Machine Status Link
Xilinx Virtex 7 with FFI100

[FPGA-pased hardware | < Event Link
< t Dedicated Subnet * >
I (GigE) t
y
Realtime Processing / Correlation w Diagnostics
LLRF 10C(s) [one or more high-end linux server(s)]
20 channels @ Has access to the following data ...
271KSamples/sec « SPX Cavity Phase/Amplitude @ 271KSamples/sec
+ slow data = = Tilt Monitor & BAT data @ 271KSamples/sec
~15MB/s (USB) (USB) « All BPMs on the Real-time Feedback system @ 1.5K blocks/sec
LLRF4 LLRF4 * SR Current @ 271KSamples/sec (Machine Status Link)
Controller Controller + <<OPTIONAL>> Selected BPMS @ 135KSamples/sec
nda

910A13

SPX Controls Use Cases

= Keep up with LLRF Controllers (data rates of up to 15 MB/s per Controller)
= Access to complex data structures

= Real-time access to monitoring and diagnostics data to multiple users/tools
simultaneously

= Ability to access real-time data using Matlab/Octave
= Data storage services
= (Cataloging services

= Fast logging system

Why Message Broker?

Advanced Message Queuing Protocol (AMQP) supports wide variety of
communications patterns and is frequently used in enterprise applications:

- Real-time feed or constantly updating data
- Advanced publish-and-subscribe
= Number of freely available AMQP broker/client implementations

= Can we leverage some of the available AMQP tools for EPICS applications, not as a
replacement for CA/PVA, but alongside those?

EPICS Collaboration Meeting October 5, 2013

SPX Controls Software Architecture

=
N

‘ EPICS Collaboration Meeting October 5, 2013
s Y % °

SPXRF Area Detector Framework Usage

Real-Time Feedback Reflected Memory Link

RTFB ND Driver
TCP Stream
Plugin

LLRF ND Driver File Plugin Stats Plugin
TCP Stream PVA Stream AMQP Stream
Plugin Plugin Plugin

Dedicated Subnet

LLRF Stream
Handler

‘ EPICS Collaboration Meeting October 5, 2013
s Y _ !

Plugin Performance: Testing

LLRF4 Driver (SPXO0) collects data in 32 KB “chapters” (16 1/Q waveforms with 512
integers)

LLRF “data burst” size is determined by couple of EPICS PVs:
- Number of chapters to collect in a single ND array
- Number of ND arrays to collect and stream

LLRF data bursts are associated with numerous ND Attributes (sent separately from
actual ND Array data)

LLRF 10OC has 3 streaming plugins:
- TCP (uses asyn v4.18 IP port driver, about 3.1K lines of support code)
- PVA (uses EPICS v4.3.0 RPC client, about 2.1K lines of support code)
- AMQP (Apache QPID v0.20, about 1.7K lines of support code)

Client-side performance was measured in terms of time required to pack and send
one ND array data to a service running on a remote host over a gigabit network

Measured times do not include service processing time, but in case of PVA they
include empty RPC response (less than 2 ms)

Client machine: i7-3770@3.4GHz, 8GB RAM, 4 cores/8 threads, 1Gbit NIC

EPICS Collaboration Meeting October 5, 2013

Execution Tine [=]

Strean FPlugin Execution Tine {Client Fack & Hrite Single HD Array Datal

I I

Aszyn IPF Client: TCF —i—

EPICS w4 RPC Client: PVYA —B—
Apache QFID Client: AHOP

-HD Array Collection Time 2 15 HBSs —M— -

2 4 8 16 32 64
HD Array Size [HEI]

Plugin Performance: Results

= Software can easily keep up with nominal data rates
= One second’s worth of LLRF ND Array data is processed in about:
% TCP Stream Plugin: 0.15 seconds
s PVA Stream Plugin: 0.30 seconds
s AMQP Stream Plugin: 1.85 seconds (would require 2 threads to keep up)

= PVA plugin performance is a factor of 6 better than AMQP plugin for streaming
arrays (monomorphic data): QPID v0.20 C++ APIs have no support for AMQP arrays
and require sending array elements via lists (very inefficient)

= Comparable PVA/AMQP plugin performance for ND attributes (polymorphic data)

= Preparing/sending initial stream message with about 200 LLRF ND Attributes
(approximately 16KB of structured data):

% TCP Stream Plugin: prepare/send message in under 0.5 milliseconds

** PVA Stream Plugin: 4-5 milliseconds to pack, 4-5 milliseconds to send; initial
call to RPC service takes 100-200 milliseconds

s AMQP Stream Plugin: 3-4 milliseconds to pack, 4-5 milliseconds to send

EPICS Collaboration Meeting October 5, 2013
10

Message Broker Approach: Lessons Learned

= Qur Broker Choice: Apache QPID
- Open source, supports AMQP v1.0 and several earlier protocol versions
- Platform Support: Linux, OS X, JVM
- Extensive set of management tools and easy to use APIs
- Client Support: C/C++, Java, Python, Perl, PHP...
- Extensive documentation
- Excellent support for maps/dictionaries
- Extremely flexible and configurable
- Works “out of the box”
- Active user community, large user base
= QPID-related Issues:
- Inadequate API support results in subpar performance with arrays
- No client support for VxWorks
= General issues:

- Not all brokers support AMQP v1.0, which is not compatible with earlier
protocol versions

EPICS Collaboration Meeting October 5, 2013
11

Summary

One can successfully integrate message-oriented middleware into EPICS-based
systems alongside CA/PVA

Main advantages of this approach:
- Flexibility

- Ability to leverage large number of freely available (open source) tools and
frameworks

AMQP is an open standard protocol that ensures interoperability between
different implementations of messaging providers/clients

Broker choice impacts performance, platform/language/feature support, ease of
use, configuration options, etc.

Future Work

Utilize SPXRF Controls software/techniques to enhance existing diagnostics and
DAQ tools at APS

- Deploy Real-time Feedback IOC and accompanying services to production

EPICS Collaboration Meeting October 5, 2013

12

Additional Slides

EPICS Collaboration Meeting October 5, 2013

13

SPX Controls Requirements

The entire SPX system must be thoroughly integrated with the existing APS
storage ring controls, timing, and diagnostics

Provide remote monitoring and control to all SPX subsystems consistent
with APS standards and existing OAG tools

- Data must be stored in SDDS (Self-Describing Data Sets) format

Provide the necessary interfaces between the SPX and other APS systems
as required by the SPX needs (e.g., RTFB, MPS, Event System, etc.)

Provide a real-time data processing environment for the SPX control
algorithms to ensure they can be executed at the necessary rate

Provide thorough diagnostic information and tools to assist in quick
determination of SPX performance and post-mortem fault analysis
(required for maintaining high availability)

EPICS Collaboration Meeting October 5, 2013

14

Why Message Broker?

= Advanced Message Queuing Protocol (AMQP) supports wide variety of
communications patterns and is frequently used in enterprise applications

= Typical use cases:

Real-time feed or constantly updating data
Point-to-point messaging

Advanced publish-and-subscribe

Delivering messages when destination comes online

Receiving constant status updates and sending large messages at the same
time and over the same network connection

Transactional messaging
Communication between diverse programming languages/operating systems

Remote procedure call patterns

= Number of freely available AMQP broker/client implementations (QPID, ActiveMQ,
RabbitMQ, SwiftMQ...)

= Can we leverage some of the available AMQP tools for EPICS applications, not as
a replacement for CA/PVA, but alongside those?

EPICS Collaboration Meeting October 5, 2013

15

Advanced Message Queuing Protocol

= Qriginated in 2003 (JP Morgan & Chase, London UK)
= QOpen standard, v1.0 became OASIS standard in 10/2012

= Wire-level protocol, mandates behavior of messaging providers and clients to
assure interoperability between different implementations

= Few protocol details:
- Basic unit of data: frame

- Nine frame bodies used to initiate, control and tear down message transfer
between two peers

- Messages on a link flow in one direction only
- All message transfers must be acknowledged (for reliability guarantees)
- Multiple links can be combined in a session

- Application creates (immutable) bare messages that have a body and an
optional list of standard (e.g., message id) and application-specific properties

- Messages may be annotated by intermediaries (via message headers)

- Application data can be in any form/encoding: one can use AMQP for sending
self-describing data

EPICS Collaboration Meeting October 5, 2013
16

AMQP vs PVA

= PV Access: natural evolution of Channel Access, designed with EPICS applications
in mind (for signal monitoring, scientific data services)

= Data type support:

Both protocols support all basic (primitive) types and strings
AMQP also supports Decimal32/64/128, TimeStamp, and Uuid

AMOQP supports described types (primitive type + descriptor), PVA supports
introspection data (describes type of user data item)

PVA supports Unions, AMQP does not

PVA supports BitSets (finite sequence of bits)

Both support composite types (structures)

Both support Arrays (sequence values of a single type)

AMOQP supports (polymorphic) Lists and Maps (polymorphic mapping from
distinct keys to values)

= PVA channel: connection to a single named resource that resides on some server
(client-server model)

= AMQP type systems involve broker as intermediary: messages on a link flow in one
direction only

EPICS Collaboration Meeting October 5, 2013

17

AMQP vs PVA

= Protocols utilize different channel/link management
= Both protocols have a concept of control vs. application messages
= PVA application message headers are fixed size (8-byte long)

= PVA has predefined messages types (e.g., channel get, channel put, channel put-
get, channel monitor, channel array, etc.)

= PVA servers must broadcast beacon messages over UDP (beacons are used for
announcing new servers and server restarts); PVA channel search messages are
typically sent over UDP, while data transmission uses TCP

= AMAQP is built on top of TCP
= AMQP has built in support for transactions and security

= PVA: optimized for performance, geared towards simplicity and efficiency
= AMAQP: more flexibility, more complexity

EPICS Collaboration Meeting October 5, 2013
18

SPX Controls Software Architecture
(Possible Alternative)

@, EPICS Collaboration Meeting October 5, 2013

\ ¥

o& - N
o

