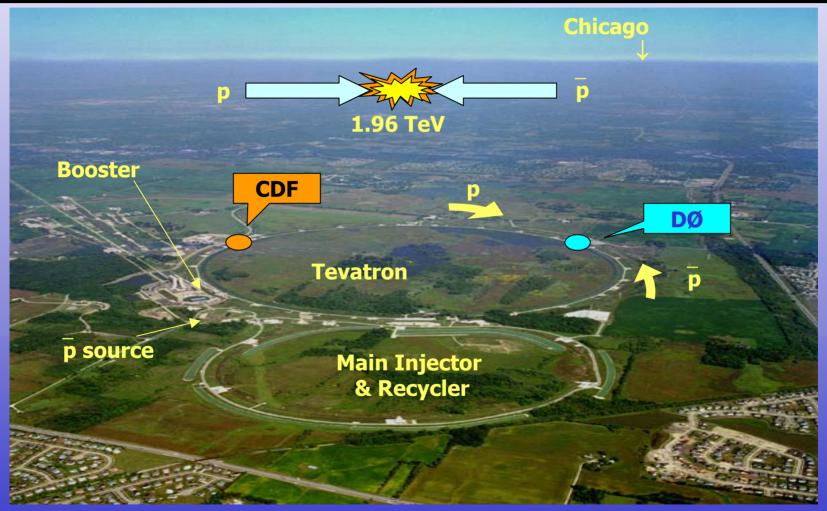


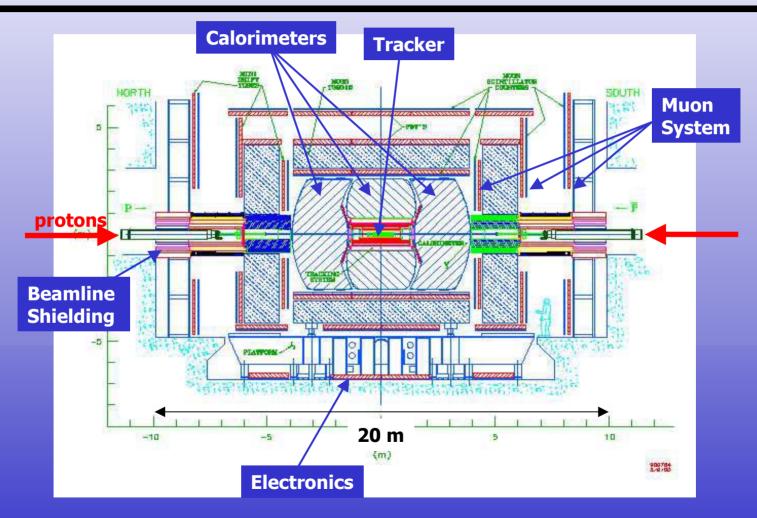
Control and Monitoring of the DZERO Detector at Fermilab

Geoff Savage for the DZERO Controls and Monitoring Group

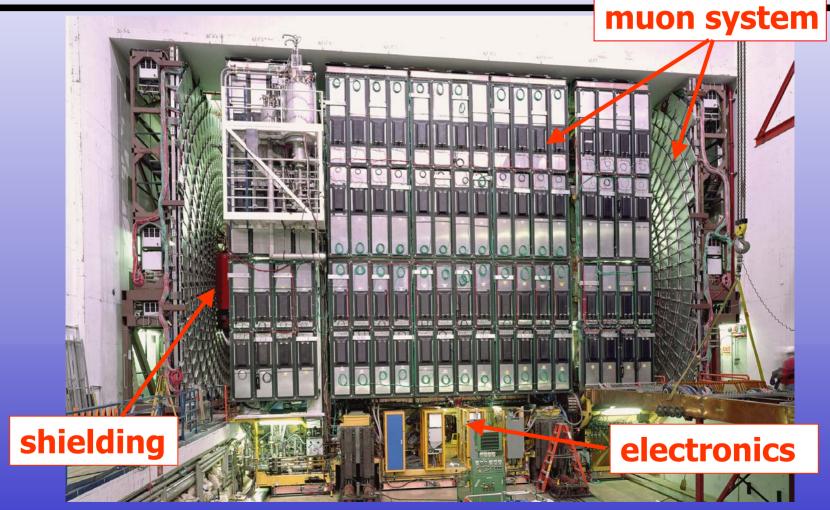


Outline

- Fermilab and DZERO
- · EPICS at DZERO
 - New field bus and devices
 - Centralized hardware database
 - Connection to the DZERO alarm system
 - Channel access from Python
 - Host tools for downloading and monitoring
 - Portable channel access server
 - Archiving
 - Infrastructure
- Short term development
- · The future of EPICS at DZERO



The Fermilab Site



A Cross Section of the Detector

As Big as Your House

A New Field Bus – MIL/STD1553B Serial Bus

- · Restricted detector access while running
- Provides a robust and highly reliable connection to electronics in the remote collision hall
- 12 controls crates with ~70 1553 busses from the counting house to the detector and ~10 busses within the counting house
- Developed a queuing driver, device support, and a generic record

DZERO Specific Records

- High voltage
 - Implemented using a state machine model
 - Linear ramping with retries
 - Trip condition recovery
 - Limits control
- SVX sequencer configures and controls the ADCs in the tracking detectors
- Rack monitor
 - Generic I/O module
 - 64 A/D inputs, 4 D/A output, 4 16-bit I/O words
 - Environment monitoring
 - Low voltage power supplies
- · Mil1553 debugging/testing on a 1553 bus

DZERO Specific Device Support

- Register access records (ai, ao, li, lo, wf, ...) through the Mil1553 bus and VME backplane
- DZERO specific records
 - Bira 4877 power supplies
 - SVX sequencers
 - Rack monitor
- Complex 1553 bus and VME backplane access for register access records
- · Read-modify-write for mbbo soft raw

Centralized Hardware Database

- EPICS databases are generated from information stored in an Oracle database
 - Templates
 - Generator files
- A collection of Python scripts exists for bidirectional conversions
- · A WWW browser interface is also available
- Some database statistics
 - 195 templates representing devices
 - 4940 devices
 - 123,486 records
 - 1,1161,659 fields
 - 52581 macro values

Connection to the DZERO Alarm System

- Alarms at DZERO are handled by the significant event system (SES)
- · An alarm is a significant event
- On a state change in a record an alarm message is sent to the SES server
- The server holds the current state of the experiment
- All significant event messages are stored in a log file on disk
- · Alarms are shown on the Alarm Display
- There are no configuration files to specify which records to monitor

DZERO Alarm Display

Alarm Display ■ ■ ×					
<u>File View Settings</u> <u>H</u> elp					
Group Name	MAJOR	MINOR	INVALID	DISABLED	GOOD
CAL	0	16	1	39	20
CFT	0	35	20	3	10
MUO	0	521	0	1	0
SMT	435	903	23	19	54
LUM	0	0	0	0	0
Control	0	3	4	12	7
Online	0	0	0	4	0
SDAQ	0	0	0	1	0
Magnet	0	0	0	2	0
Level 3 DAQ	0	1	0	0	0
Alarm Watcher	0	432	0	2	0
Status: Connection to server started					

Using Channel Access from Python

- Python wrappers for CA functions
- From the functions create a class (CaChannel) so that CA is "object oriented"
- Forms the basis of all communication with the IOCs

Monitoring the Detector

- High voltage
- Low voltage
- Environment
- Expert GUIs

Downloading the Detector

COMICS

- Puts the detector in a specific state
- See Fritz's talk tomorrow
- Expert download GUIs for each subdetector used during the commissioning phase of the detector
- The expert GUIs will continue to be used for calibration and testing

Portable Channel Access Server

- Receive information from other systems
- DZERO cryogenic and gas systems
 - Windows NT host
 - Uses SCADA based DMACS/IFIX32
- The hall probes monitoring the field in the solenoid
 - Window NT host
 - CANbus from the host to the hall probes

Archiving

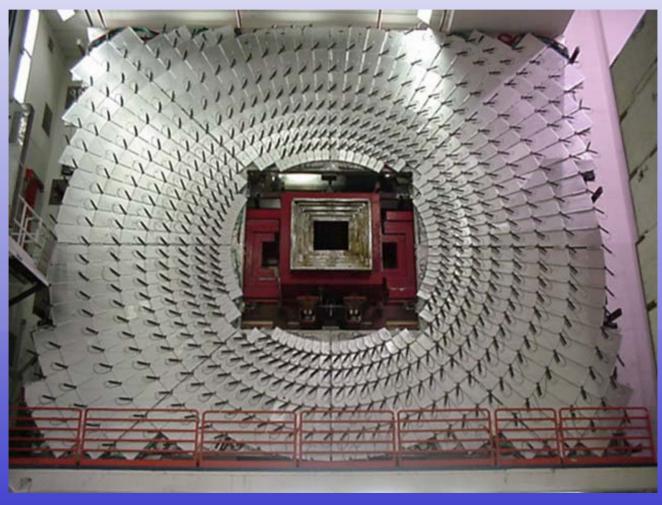
- Each sub-detector runs it's own channel archiver
- Archives are viewed with striptool and the web interface
- Developing a "slow" (every 15 minutes) archiver that enters data directly into an Oracle database
- The "issue" with the database is how to backup the data

Infrastructure

- All embedded processors run VxWorks
- Our EPICS version is R3.13.4 with modifications for the DZERO alarm system connection
- Our current controller list includes:
 - Mv162 (40) muon
 - Mv2301 (30) high voltage and controls
 - Mv2304 (25) readout and controls
 - Mv2603 (1) radiation monitoring

Short Term Development

- Update what we have already done to work with EPICS R3.14 on VxWorks
 - Conversion of record, device, and driver support
 - Alarm system connection
 - Python CA interface
 - Replace portable channel access servers
- New compiler, Tornado II, means we are moving builds from Linux to Sun
- Other tasks not mentioned here



EPICS Future at DZERO

- Convert to EPICS R3.14 or beyond for the start of Runllb in spring 2006
- Move to a non-proprietary real-time operating system?
 - Real-time linux
 - RTEMS
- Add an Intel platform?
 - Embedded Intel processor already in use at DZERO in the readout crates
 - Concerned about long term reliability and support of Motorola processors that we currently use

MUON Scintillators – Scientific Sculpture?

