

MATLAB and EPICS Channel Access Interface "Deployment for SNS Controls"

EPICS Collaboration Meeting

•22-24 May 2002 at BESSY, Germany

Carl Lionberger Ernest L. Williams Delphy Nypaver

ICS – Software Engineering Group

g Group 1 🕐

- Current/Known Implementations
- MATLAB's use in the SNS Control Room
- Matlab Channel Access (MCA) in a "Nut Shell"
- MCA and Large Array support in EPICS 3.14
- Collaboration with original author (SLAC)
- Future Work

- SLAC version provided to SNS (6.0)
 - » Win32 only
 - » Some reliability and array support problems
- SNS Current Version
 - » Linux only
 - » Survives heavy usage
 - Guards ca pend thread
 - Some memory issues fixed
 - Better CA connection support
- SLAC version 6.1
 - » Win32 only
 - » New memory model

Current Collaboration Version

- » Work in progress, available soon.
- » Win32 and Linux, ifdef's in code
- » New SLAC memory model plus SNS enhancements
- » Still EPICS 3.13 compatible

- Rapid Visualization
 - » X-Y Plots
 - » Waterfall Plots
- Rapid Programming via matlab scripting
- "What if" analysis online.
- Complements Operator Display Tools (e.g. EDM)

MATLAB's use in the SNS Control Room

MEBT Quad and RF Setting apps (V. Aleksandrov and S. Aleksandrov)

ICS – Software Engineering Group

- Library of Matlab functions
 - » written in C++
 - » Accessable as typical Matlab functions
 - can take variable length arrays of arguments and return same number of result elements to the variable they are assigned to.
 - Also take comma-separated lists of arguments with same output characteristics
 - Useable in matlab scripts or from matlab command shell.
 - » Usually no error return values use "try catch" mechanism
- mcaopen('pvname'[,...]), mcacon('pvname'[,...])
 - » Return positive integer handles used by other mca calls
 - » Differ in handle validation
 - Mcaopen returns 0 if immediate connection not possible
 - Mcacon returns handle even if ca can't find the PV

- mcacheck(handle[s])
 - » Returns 1 if connected, 0 otherwise
- mcaget(handle[s])
 - » One-time ca_get() with built-in ca_pend()
 - » Each return element may be an array or a scalar
- mcaput(list of alternating handles, put values)
 - » Returns integer array of status after put callback and ca_pend()
- Mcamon([handle, [matlab command]])
 - » No argument: return info on installed monitors
 - » 1 argument: establish monitor with data update only
 - » 2 args: monitor will also perform matlab command when monitor arrives

• Other capabilities available:

- » Get info on known handles
- » Adjust ca timeouts
- » Stop monitors
- » Clear channels
- » Exit ca
- » Explicit ca_poll request

- Current array size limit in EPICS R3.13.X is 2000 double precision floating point numbers.
- Beam Diagnostics at the SNS requires large array support in channel access.
 - » Typical ---- 40 Msamp/sec in 2 msec
 - This corresponds to ~80K samples
 - Since worst case is double precision floating, need 8bytes per sample. (therefore size is ~640Kbytes)
 - » Will need to ship 2-D data around the network as well
- IOC memory consumption is an issue
 - » Embedded targets typically don't have a lot of RAM
 - » Host-based IOCs have an abundance of inexpensive RAM

os Alamos

• Current Network Bandwidth is abundant

Getting Set-up For the Test

- Hardware Used
 - » IOC: MVME2101 PowerPC 603e {250MHz w/64 Meg RAM}
 - » Target OS: vxWorks 5.4.2 with APS patches
 - » EPICS: Release R3.14.0beta1
- Create large array database
 - » Use Compress record to make array from scalar
 - » 8 sine wave vectors {each array is 131,072 samples}
- Set environment variable on host and IOC.
 - » EPICS_CA_MAX_ARRAY_BYTES
 - » Build EPICS CA Clients against R3.14.0beta1
- Compile MCA against EPICS R3.14.0beta1
 - » Modify mexopts.sh for EPICS related compiler/linker flags
 - » mex –v mcamain.cpp

Large Array Generating Database (sineTemplate.db)

BROOKHAVEN

Los Alamos

om

Probe Channel Access Client

- CA probe compiled for EPICS R3.14.0beta1.
- Probe shows us the element count and data type
- We need to implement an Array Probe (w/scroll-bar)

snsWPMQ1_vector	
TYPE: DBF_DOUBLE COUNT: 131072 ACCESS: RW	
IOC: 160.91.225.	75:5064
precision = 3 units = volt	RISC_pad0 = 0 s
HOPR = 10.000 DRVH = 10.000	LOPR = -10.000 DRVL = -10.000
HIHI = 0.000 HIGH = 0.000	LOLO = 0.000 LOW = 0.000
Car	ncel

Los Alamos

BROOKHAVEN

<mark>II-™</mark> MATLAB <2>	
<u>F</u> ile <u>E</u> dit <u>V</u> iew We <u>b</u> <u>W</u> indow <u>H</u> elp	
🗅 🗃 🔏 🕫 🕫 🦛 🖓 🎁	/matlab/mcamerge
Launch Pad 🛛 💌	Command Window 🛛 🛃 🗙
MATLAB	May 18 2001 To get started, select "MATLAB Help" from the Help menu. >> h=mcaopen('snsWPMQ1_vector') Initializing MATLAB Channel Access Periodic CA polling started! h = 1 >> bigArray=mcaget(h); >> whos Name Size Butee Class
Launch Pad Workspace Command History A × % 7:55 PM 5/13/02% A h=mcaopen('snsWPM01_vector') bigArray=mcaget(h); whos plot(bigArray) mcamon(h, 'plot(mcacache (h)) ') mcaclearmon(h) Command History Current Directory Beadu Beadu	<pre>bigArray 1x131072 1048576 double array h 1x1 8 double array Grand total is 131073 elements using 1048584 bytes >> plot(bigArray) >> mcamon(h, 'plot(mcacache(h))') ans = 1 >> mcaclearmon(h) >> </pre>

os Alamos

- Generate and maintain a common version
 - » Working on the "generate" part now.
 - » A service to EPICS community
- Relieve SLAC of most maintenance responsibilities
 - » SNS plans to support for several years
- Relieve SNS of win32 platform maintenance responsibilities for MCA
 - » SNS platform of choice is Linux but some win32 usage appears unavoidable.

BROOKHAVEN

- Future Possible Collaboration Version
 - » Require 3.14
 - Thread-safe CA with large array support
 - use libCom OSI functions
 - » Portable, no ifdefs
- Add EPICS time-stamp support
- Extend MCA to be a portable Channel Access Server
 - » Interface MCA to Xcas
- Improve Reliability/Robustness

Many Thanks

- » Andrei Terebilo
 - original author
 - module maintainer for WIN32 port
- » Delphy Nypaver
 - initial import to LINUX
 - Integration/Reliability Testing
- » Carl Lionberger
 - core improvements under LINUX
 - current module maintainer for the LINUX port
- » Sasha Alexandrov
 - Applications Physicist (i.e. USER)
 - "Guinea Pig"

