
Making LabVIEW look like an
IOC

Kay-Uwe Kasemir, LANL
May 2002

National Instruments’ LabVIEW
Integrated Graphical Programming Language and Operator Interface

Instructions and “Virtual Instruments” (Vis):
Add, Wait, Loop, Open device, Read value, …
Many GUI elements: Knobs, Graphs, …
Supports huge number of GPIB, VXI, Serial as well as NI specific (PXI,
FieldPoint) instruments
Library for Signal Analysis, …

Widespread use for Test & Measurement

Integration via ChannelAccess,
based on ActiveX

CAS.DLL (server lib.)

List of PVs
“XYSetpoint”,
“XYReadback”,
“XYStatus”,
“XYOn_Off”, …

EpicsCAServer
(ActiveX Automation
Server for Win32)

IProcessVariable
String name,
Double deadband,
SetValue(Variant v), …

User program
Create PVs,
Interact with Instruments,
Update PVs and GUI,
Check for User Input

LabVIEW ActiveX VIs

CAServer VIs

LabVIEW
Internet: CA based on U

D
P &

 TCP

CA Clients:
OPI, Archiver,
Alarm Handler,
LabVIEW,
Matlab, …

Updates

Updates

AX Event

User Input

User program
Create PVs,
Interact with Instruments,
Update PVs and GUI,
Check for User Input

LabVIEW ActiveX VIs

CAServer VIs

LabVIEW

(similar: Visual Basic, Matlab, …)

Example LabVIEW Code
101: Publish PV and updates

102: Deadband, Config. Info, Reaction to

remote input

Performance
COM call to update value of a PV

(LabVIEW 7.I, 900MHz PC)

Reaction to user input (Check AX Event, post new value)
2 COM transactions, ~0.28ms

LabVIEW Implementations: 10 PVs, handle user input
Loop: 7ms

Data Served LabVIEW Visual Basic
Double 0.14 ms 0.08 ms
Double[100] 0.20 ms 0.16 ms
Double[500] 0.45 ms 0.40 ms
Double[1000] 0.75 ms 0.77 ms

Parallel: 0.5ms

LANL Experience
Terrific for small systems

Signal generator, GPIB, new PC: handled in one afternoon
No need for vxWorks, IOC, boot host, display computer
Compare: 3 days for EPICS IOC, GPIB Lan Box, EDM.
(Not considered: Advantages of EPICS driver & DB and Lan box)

Faster initial development cycle
No recompile & reboot (until turned into distributed system)

Handled up to ~500 PVs on one PC

LabVIEW: Limits of Visual Coding
Diagram gets too big, “wires” tangled

Hardware engineers switched to e.g. VHDL for this reason

No ASCII import/export
no real CVS support, no comparable NI tool
no script-generated code from signal list, RDB, Capfast, ...

What you see is all you get
IOC’s scanning mechanisms and reaction to remote input
have to be re-implemented with fundamental instructions
(loops, delays, …)

LabVIEW Oddities we ran into
Movie-Style “Sequence” is a cute but only shows one
frame at a time

Array handling:
Array constants easy
to accidentally extend

Auto-indexing misleading
for different sized input arrays

Main Loop

LabVIEW: Polling
Remote input via ChannelAccess

ActiveX Event is sent with <new value>,
LabVIEW has to catch event, check the value and - if accepted -
update PV to that new value

While e.g. VisualBasic can handle events async.,
LabVIEW can only “WaitForEvent”

Response delayed
until LabVIEW’s
main loop comes around
to service the PV changes
In principle, LabVIEW offers
threads & semaphores, but
is that still “easy”?
Not debuggable, even
some Nat.Inst. VIs
are incompatible.

Check
PVs for
remote
input

Interact
with
HW,

perform
control

Update
PVs to
reflect
current
status

Most code in
here!

Conclusion (still)

Win32-Program (with not too much)
data worth serving, e.g. LabVIEW

‘EPICS’ data

+
ActiveX CA Server

ActiveX Automation Server
COM (Component Object Model) allows programs to share objects

COM Classes identified via CLSID
Win32 handles creation and messaging
All objects implement the IUnknown Interface:
AddRef, Release, QueryInterface
Programs agree on custom interfaces
so that they can use each other’s objects.

ActiveX Automation:
Additional well-known interfaces,
allowing IDEs and interpreted
languages to

“browse” properties, methods
and events
“late” as well as “early” binding

LabVIEW: required IProvideClassInfo
in addition to standard skeleton created
by MS Visual C++ ATL wizard

EpicsCAServer.IProcessVariable
String name
Double deadband
String enum_string(Long index)
String units, Long precision,
Double low_warning, high_warning, ...
SetValue(Variant new_value),
SetEnumValue(Long new_value),
SetValueAndTime(Variant new_value, …)
Event Changed(Variant value_received)

EpicsCAClient.IProcessVariable

String name
Long is_connected
Variant Value
String units, ...
Event NewValue(Long is_connected,
Variant value)

