
EPICS IOC Software Configuration Management
Releases 3.13.1 and 3.13.2

Marty Kraimer, Andrew Johnson, Janet Anderson, Ralph Lange
April 2000

toc.html

Table of Contents

 1. Overview...1
 User Prerequisites...1
 System Prerequisites...2
 Make vs. Gnumake...2

 1.1. Overview of Application Structure...2
 1.2. Use by Application Developers..3

<top>/config...3
 Types of Top...3
 Templates..4
 Tools...4
 References...4

 2. Getting Started...5
 Check Environment..5
 Create example Application..5
 Inspect Files..6
 Build..6
 Inspect Files..6
 Boot Parameters..6
 Boot...7
 Test..7

 3. Managing a <top>..9
3.1. Definition of <top>...9
3.2. Directory Structure..10

 Directories..11
 Makefiles...12
<top>/config/*..12
base.dbd <app>Include.dbd..14
baseLIBOBJS..14
st.cmd..15
cdCommands..15
Release 3.13.1...16
Release 3.13.2...16

3.3. Using External <top> Components...16
3.4. Switching to a New Release of an External <top> component..17

 4. Building Components..19
4.1. Locating Make Rules..19
4.2. Make...19

 Where make is used...19
 Make targets...20

4.3. Description of Makefiles...21
 <top>/Makefile..21
 <top>/xxxApp/Makefile..21

IOC Software Configuration Management i

Table of Contents

 <top>/xxxApp/src/Makefile.Host..21
 <top>/xxxApp/src/Makefile.Vx...26
 <top>/xxxApp/xxxDb/Makefile.Host..27
 <top>/iocBoot/Makefile..29
<top>/iocBoot/iocxxx/Makefile...29
 CVSROOT...31
 Commands...31
.cvsignore file..31
.cvsrc file...33

 5. CVS Reference...33

 6. Creating <top> Applications...35
6.1. makeBaseApp...35

 Usage...35
 Description...36

6.2. Application Templates Supplied With Base...38
6.3. Example Application..38
6.4. st.cmd..40

 7. APS/ASD Configuration Management Procedures..43
 7.1. Overview..43

 Background..43
7.2. CVS Repository for IOC Applications...45
7.3. Adding a new <top> to the CVS repository...46

 Documentation and Release Notes..46
7.4. Operations Directory Structure...47
7.5. Support Management..48

7.5.1 Overview..48
7.5.2. Procedures for <supporttop> Maintained in Local Repository......................................49

Developer's Cookbook...49
 General Guidelines:...49
 Initial Checkout:..50
 Tagging a new release:..50
 Creating a tar file:..50
 Patching Old Releases...51

Operations Cookbook..51
 Managing local <supporttop> modules...51
7.5.3. Managing a <supporttop> from another Repository..52

7.6. IOC Management..54
7.6.1. Overview...54
 Step 1...56
 Step 2...56
 Step 3...56
 Step 4...56

ii IOC Software Configuration Management

Table of Contents

 Why is minor development done on a branch?..57
 Versions of a branch..57

7.6.2. Developer's Cookbook...57
 General Guidelines:...57
 Check Out an <ioctop> branch..58
 Committing Changes...58

7.6.3. Operations Cookbook..58
7.7. Additional Guidelines for Operations...58

 Backup each <ioctop>...58
 Updates in <ioctop> areas...59
 $CVSROOT/CVSROOT/cvsignore..59

 8. EPICS CVS Repository...61
8.1. Overview...61

 Licensing and Distribution...61
 CVSROOT...61

8.2. Base...61
8.3. Modules..61

Module Classifications...62
8.4. Module Owner Responsibilities..64

 Documentation...64
Distribution...64
 Development..65
 Delegation..65

 EPICS _template_ Module..67
 Hardware Supported...67
 Where to Find it..67
 Required Modules...67
 Site Installation and Building...68
 Application Installation...68
 Documentation..69
 In Use..69

IOC Software Configuration Management iii

iv IOC Software Configuration Management

 1. Overview
Several EPICS Application Source/Release systems are available. Your site may have adapted one of them.
Consult your EPICS system manager. This manual describes procedures that can be used for simple or
complicated applications.

This document describes how to create and build IOC applications. This includes:

• IOC databases.
• vxWorks startup files.
• State Notation Programs.
• Record/Device/Driver support.
• Access security configuration files.
• Other code to be executed in an IOC.
• Special Host code.

Procedures are described for managing large applications. The principle features are:

• The IOC software is divided into <top> areas. Each <top> is maintained separately.
• Different <top> areas can be linked to different releases of software outside of that <top> such as

EPICS base.
• Two basic classes of <top> exist:

<supporttop>
A <top> the products of which are meant to be used by other <top> areas.
Examples are EPICS base and various unbundled hardware support modules.

<ioctop>
A <top> for a set of iocs which share the same applications.

• Where two or more <top> areas are linked, the linked versions must be coherent (i.e. all the same
release of EPICS base and other software).

• All editable files are placed under CVS control.
• Each application developer makes changes in a private copy of one or more <top> areas.
• Operations maintains the official <top> areas from which the operational iocs are booted.
• cvs,gnumake,and makeBaseApp are the main tools used to create and build applications.
• Templates are provided for creating new application directories. EPICS base provides two sets of

templates: simple and example. Additional templates can be created.

The structure of the EPICS CVS repository is described, along with the distributed maintenance approach
which will apply to all hardware support modules in the future. The responsibilities of a module owner are
also covered here.

 User Prerequisites

This manual assumes that the reader:

• Understands the C language
• Knows how to use a text editor
• Has at least a superficial knowledge of the make utility

IOC Software Configuration Management 1

 System Prerequisites

Before you can generate EPICS IOC applications your host and/or EPICS system manager must have done
the following:

• Installed vxWorks and a board support package. Consult the vxWorks documentation for details.
• Installed EPICS base.

 Make vs. Gnumake

EPICS provides an extensive set of make rules. These rules only work with the GNU version of make,
gnumake, which is supplied by the Free Software Foundation. Thus, on most Unix systems, the native make
will not work. On some systems, e.g. Linux, GNU make may be the default. This manual always uses
gnumake in the examples.

 1.1. Overview of Application Structure

A <top> has the following structure:

<top>/
 config/
 xxxApp/
 src/
 xxxSrc/
 ...
 Db/
 xxxDb/
 ...
 xxxApp/
 ...
 iocBoot/
 iocxxx/
 ...
 bin/
 <host_arch>
 <target_arch(s)>
 include/
 db/
 dbd/
 ...

Each <top> area is a separately managed set of application files. Separately managed means that each
<top> can use it's own release of software obtained from outside the application, e.g. a release of EPICS
base.

A <top> area may contain one or more xxxApp subdirectories and at most one iocBoot directory. The
xxxApp areas are created by application developers as needed to manage the software in a logical structure.
All software components needed by IOCs are built in these xxxApp directories. The iocBoot directory
contains a subdirectory for each IOC that boots from this <top> area. An IOC can only use a single
<top> area for booting, and only one IOC should boot from each iocxxx subdirectory under iocBoot. The

 1. Overview

2 IOC Software Configuration Management

most important source file in a boot directory is the st.cmd file which is executed after vxWorks is started
on an IOC (the vxWorks boot parameters should have the full path to this file as the startup script). The
st.cmd file loads various files which were built in the xxxApp directories and installed in the
bin/<arch> or other installation directories, then starts the IOC software.

Application developers decide what constitutes a <top>. For example, at APS, the Linac is completely
contained in a single <top> area, while the RF is spread over three <top> areas: parrf, boosterrf, and srrf.
No <top> area contains iocxxx directories from multiple subsystems. A decision on how to divide a control
system between different <top> areas and xxxApp directories within each <top> may be obvious for
purely technical reasons. Where this is not the case also consider the effects of future upgrades and
maintenance, for both the IOC applications and their support software.

 1.2. Use by Application Developers

Under xxxApp are source and database directories. A source directory contains source files for building
executables and database description files. Makefiles specify what to build. These makefiles can specify
components obtained from outside the <top> area, such as EPICS base. After modifing files in this directory
the command:

gnumake

will rebuild components that depend on the modified files. (It will be seen below that the generated
components are actually copied to an install directory)

The xxxApp database directories contain IOC database files and/or template and substitution files used to
generate database files. If templates are used then whenever a template or substitution file is modified the
gnumake will recreate the database file(s).

After changes are made in any xxxApp directory and the components rebuilt, the affected IOCs can be
rebooted from the appropriate iocBoot subdirectory. If new components are added, it may be necessary to
modify the st.cmd files.

<top>/config

This directory contains make rules, configuration files, and file RELEASE. RELEASE contains a list of the
locations of all products needed by this <top> that are maintained elsewhere (normally these are
<supporttop> areas, see next section).

 Types of Top

There are two different flavours of <top> described in this document which are used for slightly different
purposes:

<supporttop>
A <supporttop> contains products meant for use by other <top> areas, incuding other
<supporttop> and <ioctop> areas. If a <supporttop> contains an iocBoot
directory its only purpose is for use in testing the <supporttop> software, not for

 1. Overview

IOC Software Configuration Management 3

operational systems. All files meant for use by other <top>s are installed into standard
subdirectories such as include, bin and dbd.

<ioctop>
An <ioctop> has an iocBoot directory with an iocxxx sub−directory for each ioc. This
contains the st.cmd file for the ioc, and can also be used for other ioc−specific files needed
by the application.

 Templates

The makeBaseApp.pl utility creates new application areas. It does this by copying and transforming directory
trees from a template area. EPICS base provides templates for a simple application and for an example
application. Each site can, however, create their own set of templates.

 Tools

The following tools are used:

• cvs
• gnumake − GNU make plus EPICS supplied configuration definitions, make rules, and script files.
• makeBaseApp − An epics/base supplied tool for creating <top> areas.

 References

Version Management with CVS, Per Cederqvist et al.

GNU Make, Richard M. Stallman and Ronald McGrath

EPICS Application Developer's Guide, Marty Kraimer

 1. Overview

4 IOC Software Configuration Management

 2. Getting Started
This section briefly explains how to create an example IOC application in a directory <top>, naming the
application firstApp and the ioc directory ioctarget.

 Check Environment

Execute the command:

echo $HOST_ARCH

This should display your workstation architecture, for example solaris. If you get an "Undefined variable"
error ask your EPICS system manager how to set this variable for your particular environment.

 Create example Application

Execute the commands:

mkdir <top>
cd <top>
<base>/bin/<arch>/makeBaseApp.pl −t example first
<base>/bin/<arch>/makeBaseApp.pl −i −t example target

where:

<top>
Any directory name you chose.

<base>
Full path name to EPICS base.

<arch>
Your host architecture (i.e. the output of the echo command above).

For example at ANL/APS the following commands create an application:

cd
mkdir myapp
cd myapp
/usr/local/epics/baseR3.13.1/bin/solaris/makeBaseApp.pl −t example first
/usr/local/epics/baseR3.13.1/bin/solaris/makeBaseApp.pl −i −t example target

Windows Users Note:

Perl scripts are invoked with the command perl <scriptname> on win95/NT. Perl script names are case
sensitive. For example to create an application on WIN95/NT:

perl C:\epics\base\bin\win32\makeBaseApp.pl −t example first

IOC Software Configuration Management 5

 Inspect Files

Spend some time looking at the files that appear under <top>. Do this BEFORE building.

 Build

In directory <top> execute the command:

gnumake

 Inspect Files

Again look at all the files that appear under <top>.

 Boot Parameters

The next step is to set the IOC boot parameters via the console serial port on your IOC. Life is much easier if
you find out how to connect the serial port to a window on your workstation. See your EPICS system
manager for details.

The vxWorks boot parameters look something like the following:

boot device : xxx
processor number : 0
host name : xxx
file name : <full path to board support>/vxWorks
inet on ethernet (e) : xxx.xxx.xxx.xxx:<netmask>
inet on backplane (b):
host inet (h) : xxx.xxx.xxx.xxx
gateway inet (g) :
user (u) : xxx
ftp password (pw) (blank = use rsh): xxx
flags (f) : 0x0
target name (tn) : <hostname for this inet address>
startup script (s) : <top>/iocBoot/ioctarget/st.cmd
other (o) :

The actual values for each field are site and IOC dependent. Consult your EPICS system manager for help.
Two fields that you can change at will are the vxWorks boot image and the location of the startup script.

Note that the full path name for the correct board support boot image must be specified. If bootp is used the
same information will need to be placed in the bootp host's configuration database instead. See your EPICS
system manager for details.

 2. Getting Started

6 IOC Software Configuration Management

 Boot

You are now ready to boot your IOC. When your boot parameters are set properly, just press the reset button
on your IOC, or use the @ command to commence booting. You will find it VERY convenient to have the
console port of the IOC attached to a scrolling window on your workstation.

 Test

See the description of the example given in the section Application Templates Supplied with base. Also try
some of the vxWorks shell commands described in the "IOC Test Facilities" chapter of the Application
Developer's Guide.

 2. Getting Started

IOC Software Configuration Management 7

#Templates Supplied with base

 2. Getting Started

8 IOC Software Configuration Management

 3. Managing a <top>

3.1. Definition of <top>

<top>:
An autonomously managed area which has a structure like that created by
makeBaseApp.
Autonomously managed means that each <top> can follow its own release schedule.

The locations of software that a <top> uses from outside its own area are specified in its config/RELEASE
file. For example:

#RELEASE Location of external products
SUPPORT=/usr/local/iocapps/R3.13.1/support
TEMPLATE_TOP=$(EPICS_BASE)/templates/makeBaseApp/top

SHARE=$(SUPPORT)/share/1−1
MPF=$(SUPPORT)/mpf/1−1−asd1
EPICS_BASE=$(SUPPORT)/base/3−13−1−asd2

IMAGEFLOW=/net/phoebus/usr3/imageflow2.4/imageflow
MSITOP=/usr/local/epics/extensions

In the above example:

• IMAGEFLOW and MSITOP are obtained from outside the IOC applications area.
• Release numbers such as 1−1−asd1 are explained later in this document.
• The order of entries in the file is important when searching include files. EPICS_BASE should

usually be listed last to allow other support areas to override its entries.

For ioc applications there are two flavors of <top>:

<ioctop>
A <top> area in which a set of related iocs are managed and booted.

<supporttop>
A set of software meant to be used by one or more <ioctop>s, e.g. device and driver
support for a particular hardware interface board, or a commonly used database template. See
the Support Management: Overview section for details.

It is expected that a small set of application engineers will be responsible for a particular <ioctop>, and
that the iocs in an <ioctop> are responsible for a limited set of functions. If this is done it is much easier to
manage ioc applications.

IOC Software Configuration Management 9

3.2. Directory Structure

<top>/
 Makefile
 config/
* CONFIG
* CONFIG_APP
 Makefile
* RELEASE
 RULES.Db
 RULES.Host
 RULES.Vx
 RULES.ioc
 RULES.iocBoot
 RULES_ARCHS
 RULES_DIRS
 RULES_TOP
 makeDbDepends.pl
 makeIocCdCommands.pl
 replaceVAR.pl
 xxxApp/ or xxxapp
 Makefile
 src/ or xxxSrc/ or xxxsrc/
 Makefile
* Makefile.Host
* Makefile.Vx
* base.dbd
* baseLIBOBJS
* <app>Include.dbd
* C and State Notation Language source
* menu, recordtype, device and driver database definitions
 Db/ or db/ or xxxDb/ or xxxdb/
 Makefile
* record instance files
* record template and substitution files

privately managed directories
 iocBoot/ or iocboot/
 Makefile
 Makefile.Host
 nfsCommands
 iocxxx/
* Makefile
* st.cmd
$ cdCommands
$ dbd/

installed database description files
$ db/

installed record instance files
$ include/

installed include files
$ bin/
$ <host_arch>

installed Host executables
$ <ioc_arch>

installed IOC products
$ lib/

 3. Managing a <top>

10 IOC Software Configuration Management

Files above marked "*" are user created and/or edited. Each of these file types is discussed in this section.

Entries marked "$" are directories or files created by gnumake. Since
gnumake clean uninstall removes these files and directories, no permanent data should be stored
here.

 Directories

The user−modifiable directories are:

config
Directory containing configuration files for gnumake.

xxxApp
xxxapp

Directory containing source files and database files. An arbitrary number of
xxxApp directories are allowed. Each must have App or app appended to the name
because the top−level Makefile looks for this pattern.

xxxsrc
xxxSrc

Directory containing source files. An arbitrary number of source directories
can appear under each xxxApp. The names must have the suffix src or
Src. A source directory is where C code, sequence programs, scripts, etc.
are created and built.

xxxdb
xxxDb

Directory containing record instance files. An arbitrary number of Db
directories can exist under each xxxApp. The name must have the suffix
db or Db. Each Db directory can contain record instance, template, and
substitution files or the equivalent CapFast schematics.

iocBoot
iocboot

Directory containing a subdirectory for each IOC.

iocxxx
Directory from which IOC iocxxx is booted. Each must have
ioc prepended to the name because iocBoot/Makefile looks for it.

The following directories are created by gnumake to hold built objects:

dbd
Installed Database Definitions Directory.

include
Include Directory. The directory in which include files generated from menu and record type
definitions are installed.

bin

 3. Managing a <top>

IOC Software Configuration Management 11

Binaries Directory. This directory contains a subdirectory for the host architecture and for
each target architecture. These are the directories in which executables, binaries, etc. are
installed.

lib
Library Directory. This directory contains a subdirectory for the host architecture and for
each target architectiure. These are the directories in which libraries are installed.

db
Installed Databases Directory. The directory into which record instance, template and
substitutions files are installed.

 Makefiles

The makefiles are described in the section Description of Makefiles.

<top>/config/*

These files contain definitions, make rules, and perl scripts used by the various Makefiles in <top>. Please
note that most developers will only need to modify the files RELEASE and, until release 3.13.2,
CONFIG_APP.

The following describes the files generated by makeBaseApp using either template simple or example. It is
possible to create templates for makeBaseApp that act differently.

CONFIG
This is the file in which you add to or modify make variables in EPICS base. A useful
definition to override is:

CROSS_COMPILER_TARGET_ARCHS =

This specifies the vxWorks architecture to build. If your site builds base for multiple target
architectures but your IOCs only use a single architecture, overriding this variable with a
subset of the base target architectures will save build time.

If you are using capfast you may want to add the definition:

DB_OPT = YES

CONFIG_APP
This file contains definitions for external products such as EPICS base and share. You should
edit this file if you are using external products besides epics_base and share. Follow
the models already in the file.

NOTE: Beginning with base release 3.13.2 the definitions that previously had to be manually added
to this file to support external products will automatically be generated from the definitions in
RELEASE. This is done by gnumake which executes a new script makeConfigAppInclude.pl.
From 3.13.2 onwards therefor it will no longer be necessary to edit this file.
RELEASE

This file specifies the location of external products such as EPICS base. All entries in the

 3. Managing a <top>

12 IOC Software Configuration Management

#makeFiles

RELEASE file must define a full path name, either directly or using gnumake macro
substitutions. The procedures for going to a new release of an external product are described
later in this chapter. One step in those procedures is to edit this file. The config files created
by makeBaseApp provide support for the following variables:

SUPPORT
This convenience (optional) variable is usually set to the top of the directory
tree holding support applications; succeeding definitions are usually given
relative to this.

EPICS_BASE
This variable must be defined, but usually as the last entry.

TEMPLATE_TOP
This variable specifies the location of the template top area for
makeBaseApp.

RULES.Db
This file contains rules for building and installing database files. Databases generated from
templates and/or CapFast schematics are supported.

RULES.Host
The template file includes the RULES.Host from base. If you want to add rules that apply
to all Makefile.Host files then this is the place to add the rules.

RULES.Vx
The template file includes the RULES.Vx from base. If you want to add rules that apply to
all Makefile.Vx files then this is the place to add the rules.

RULES.ioc
This is a file containing rules for the Makefiles in the directories from which IOCs are booted.

RULES.iocBoot
This is a file containing rules for the Makefiles in the iocBoot directory. It should not be
necessary to modify this file.

RULES_ARCHS
This file includes the RULES_ARCHS from base. It is seldom necessary to modify this file.

RULES_DIRS
This file includes the RULES_DIRS from base. It is seldom necessary to modify this file.

RULES_TOP
This file includes RULES_TOP from base. If MASTER_IOCAPPS is defined it also runs a
utility that creates soft links to the master IOC. This feature only works if the host operating
system supports soft links.

makeIocCdCommands.pl
This is a perl script that generates a cdCommands file for use by IOCs. See the section
Component: Directory Structure : cdCommands in this chapter for details.

makeDbDepends.pl
This is a perl script that generates make dependencies from substitutions files.

makeConfigAppInclude.pl
Starting with release 3.13.2 this script will be provided. It automatically generates the
definitions which previously had to be added to CONFIG_APP. It puts the definitions into a
file CONFIG_APP_INCLUDE.

replaceVAR.pl
This is a perl script that changes VAR(xxx) style macros in CapFast generated databases

 3. Managing a <top>

IOC Software Configuration Management 13

into the $(xxx) notation used in EPICS databases.

base.dbd
<app>Include.dbd

These files are used to configure database definitions for the following:

• menus
• record types
• device support
• driver support
• breakpoint tables

base.dbd contains definitions obtained from the base release. It contains statements like:

include "menuGlobal.dbd"
include "menuConvert.dbd"
include "aiRecord.dbd"
#include "aaiRecord.dbd"
...
device(ai,CONSTANT,devAiSoft,"Soft Channel")
#device(ai,CONSTANT,devAiSoftRaw,"Raw Soft Channel")
...
#driver(drvXy010)
#driver(drvVxi)
...

Thus it has a definition for all menus, record types, devices, and drivers supplied in EPICS base. Some record
types and ALL hardware device and driver support are proceeded by the comment symbol "#". You are
expected to edit this file and select the desired support routines, by removing the "#" from the relevent lines.

A version of base.dbd appropriate to your version of EPICS base can be obtained from
<epics_base>/templates/makeBaseApp/top/exampleApp/src.

The file <app>Include.dbd is used to construct a complete list of definitions needed by the application.
It must contain the line

include "base.dbd"

to incorporate all the definitions from base, followed by any definitions needed for locally built support. The
name of this file is specified in the DBDEXPAND variable in Makefile.Host. Then when gnumake is
executed, a file with the name defined by DBDNAME in Makefile.Host and having all of the include
statements expanded will be installed into <top>/dbd/.

baseLIBOBJS

This file lists all the compiled binary object files needed for the record, device, and driver support supplied in
EPICS base. Since the file is intimately related to base.dbd, if base.dbd (is, is not) used in a particular
xxxApp/src directory, then baseLIBOBJS should (be, not be) used in that directory.

 3. Managing a <top>

14 IOC Software Configuration Management

baseLIBOBJS contains a series of definitions as follows:

#LIBOBJS += $(EPICS_BASE_BIN)/aaiRecord.o
#LIBOBJS += $(EPICS_BASE_BIN)/aaoRecord.o
LIBOBJS += $(EPICS_BASE_BIN)/aiRecord.o
...
#
Device Support
#
#LIBOBJS += $(EPICS_BASE_BIN)/devAaiCamac.o
...
#
Driver support ANSI
#
#LIBOBJS += $(EPICS_BASE_BIN)/drvAb.o
...

As with the base.dbd file, some record types and ALL hardware device and driver support are proceeded
by the comment symbol "#". You are expected to edit this file and select the desired support routines, by
removing the '#' from the front of the appropriate lines. These edits should match those made in the
base.dbd file, although no harm will usually come from uncommenting entries in baseLIBOBJS that
correspond to commented−out entries in base.dbd, the effect is just to use up memory unnecessarily. The
reverse is not generally true, and this also assumes that there are no references to the relevent record or device
type in any database loaded by the IOCs concerned.

Makefile.Vx contains rules that will combine all support into a single module with a name given by the
value of LIBNAME.

NOTE: A version of baseLIBOBJS can be obtained from

<epics_base>/templates/makeBaseApp/top/exampleApp/src

APOLOGY: It would be nice if this file could be automatically generated from the information in the
expanded dbd file described above. This is not currently possible because there is no naming convention for
device and driver support source files.

st.cmd

The vxWorks startup file is described in a later section.

cdCommands

This file is automatically generated within each <top>/iocBoot/iocxxx directory by gnumake
executing makeIocCdCommands.pl. When this cdCommands script is called by st.cmd it generates a
series of vxWorks shell string variables for use with the vxWorks cd command. For example the subsequent
line in st.cmd

cd startup

will change to the directory containing the st.cmd file. The perl script used differs between releases 3.13.1

 3. Managing a <top>

IOC Software Configuration Management 15

and 3.13.2. The following describes the variables generated for each release

Release 3.13.1

startup
The full path to the directory containing the startup file.

appbin
The full path to <top>/bin/<ioc_arch>

share
If SHARE is defined in <top>/config/RELEASE this gives the full path to share

Release 3.13.2

top
The full path to <top>

startup
The full path to the directory containing the startup file.

topbin
The full path to <top>/bin/<ioc_arch>

In addition, for each external <top> listed in <top>/config/RELEASE via an entry
"<PROD>=<path>" the following variables are also created:

<prod>
The full path <path> to the product if the the directory actually exists

<prod>bin
The full path to <path>/bin/<ioc_arch> if this directory exists.

Thus in 3.13.2 it is easy to get to the <prod> and <prod>/bin/<ioc_arch> directories of all external
products specified in <top>/config/RELEASE. Once at the top of a product its db and dbd subdirecties
can be accessed by using relative pathnames.

3.3. Using External <top> Components

The structure of <top> is designed to make it easy to link to other <top> areas, each with it's own release
schedule. The basic methods that make this possible are:

• A <supporttop> installs its public components into standard subdirectories. For example all
executables are stored into <supporttop>/bin/<arch>.

• To use components from another <supporttop> in any <top> do the following:

♦ Add a line to <top>/config/RELEASE defining the external product's location, eg:

MYPROD = $(SUPPORT)/myprod/1−3

♦ If using EPICS releases before 3.13.2, add definitions to <top>/config/CONFIG_APP.
For example:

 3. Managing a <top>

16 IOC Software Configuration Management

ifdef MYPROD
MYPROD_BIN = $(MYPROD)/bin/$(T_A)
USR_INCLUDES += −I$(MYPROD)/include
USER_DBDFLAGS += −I $(MYPROD)/dbd
endif

From release 3.13.2 onwards, executing gnumake in the config directory performs an
equivalent step.

♦ In one or more of the <top>'s source and database directories reference components from
the <supporttop> as required. These references can take the following forms:

◊ #include statements used in C and C++ source code will search the
<supporttop>/include directory for any installed header files

◊ include statements found while expanding an <app>Include.dbd file will
search the <supporttop>/dbd directory for the installed dbd files named.

◊ Compiled object files from a <supporttop>/bin/<arch> directory can be
linked into an xxxLib object library by adding the object filename to the definition
of LIBOBJS in Makefile.Vx using statements like:

LIBOBJS += $(MYPROD_BIN)/myprod.o

♦ From release 3.13.2 the automatically generated cdCommands file in each
iocBoot/iocxxx directory defines string constants which can be used in the st.cmd file
to cd to the top and bin/<arch> directories of any <supporttop> defined in
<top>/config/RELEASE. For example:

cd myprod
dbLoadRecords("db/myprod.db","ioc=prod1")

• A full description on how to use an external <supporttop> module in an application should form
part of the module's documentation, which may over−ride some of the above instructions. If such
documentation is not provided, ask the module maintainer why not.

3.4. Switching to a New Release of an External <top> component

The file <top>/config/RELEASE contains definitions for components obtained from outside <top>. If
you want to link to a new release of anything defined in the file do the following:

cd <top>
gnumake clean uninstall
vi config/RELEASE

change the relevent line to point to the new release
gnumake

All definitions in <top>/config/RELEASE must result in complete path definitions, i.e. relative path
names are not permitted. If your site could have multiple releases of base and other <supporttop> components
installed at once, these path definitions should contain a release number as one of the components. However
as the RELEASE file is read by gnumake, it is permissible to use macro substitutions to define these
pathnames, for example:

 3. Managing a <top>

IOC Software Configuration Management 17

SUPPORT = /usr/local/iocapps/R3.13.1
EPICS_BASE = $(SUPPORT)/base/3−13−1−asd2

 3. Managing a <top>

18 IOC Software Configuration Management

 4. Building Components

4.1. Locating Make Rules

Most directories in a <top> which contain human editable files also contain one or more Makefiles. A
Makefile normally includes a file from <top>/config. Thus the Makefile "inherits" rules and definitions
from config. The files in config may in turn include files from <base>/config or from some
<supporttop>/config. This technique makes it possible to share make variables and even rules across
applications.

4.2. Make

 Where make is used

gnumake can be executed in any subdirectory where a Makefile appears, which is almost every
subdirectory. Executing gnumake in a particular directory usually causes it to descend into any
subdirectories and run any Makefiles found there as well.

<top>
The most useful commands at the top level directory are:

gnumake
This rebuilds and installs everything which is not up to date.
NOTE: Executing gnumake without arguments is the same as gnumake
install

gnumake clean
This can be used to save disk space by deleting the O.<arch> directories
from the xxxApp areas, but does not remove any installed files from the bin,
db, dbd etc. directories.

gnumake rebuild
This is the same as gnumake clean install. If you are unsure about
the state of the generated files in an application, just execute gnumake
rebuild.

gnumake clean uninstall
This command removes everything created and installed by gnumake.

gnumake tar
This command makes a tar image of the entire <top> directory (excluding
any CVS directories).

config
Starting with release 3.13.2 running gnumake in this directory creates the file
CONFIG_APP_INCLUDE.

xxxApp

IOC Software Configuration Management 19

Two useful commands at this level are gnumake or gnumake rebuild, which are the
same as issuing the same command in each subdirectory of xxxApp.

xxxsrc
xxxSrc

Running the command gnumake (which is the same as executing
gnumake install) builds and installs all out of date host and IOC
components described by the files Makefile.Host and Makefile.Vx.
The builds are performed in subdirectories O.<arch>.
It is possible to build for a single architecture via the command gnumake
<arch>. For example, if your IOC uses an MVME167 CPU, then the build
directory used is O.mv167, and the command is gnumake mv167.
Another useful command is gnumake clean which deletes the
O.<arch> build directories created by make. .<arch> can be appended
to invoke clean for a single architecture.
The command gnumake rebuild is the same as gnumake clean
install.

xxxdb
xxxDb

Executing gnumake in this directory generates and installs database
instance files, template and substitution files from plain sources or CapFast
schematics.

iocBoot
Executing gnumake here is the same as issuing gnumake in each subdirectory of
iocBoot.

iocxxx
Executing gnumake in these directories creates their cdCommands files.
See the section <top>/iocBoot/iocxxx/Makefile below for details.

 Make targets

The following is a summary of targets that can be specified for gnumake:

• <action>
• <arch>
• <action>.<arch>
• <dir>
• <dir>.<action>
• <dir>.<arch>
• <dir>.<action>.<arch>

where:

<arch>
sun4, solaris, hp700, mv167, etc. − builds named architecture only.
host − builds for host architecture only.

 4. Building Components

20 IOC Software Configuration Management

cross − builds for vxWorks architecture(s) only.
<action>

clean, inc, install, build, rebuild, buildInstall, uninstall, or tar
NOTE: uninstall and tar can only be specified at <top>

<dir>
subdirectory name

4.3. Description of Makefiles

 <top>/Makefile

This makefile performs a gnumake in the xxxApp and iocBoot subdirectories. In addition it allows the top
level make options uninstall and tar as described in the previous section. There is seldom need to modify this
file.

 <top>/xxxApp/Makefile

This makefile just executes gnumake in each *src*, *Src*, *db* and *Db* subdirectory.

 <top>/xxxApp/src/Makefile.Host

The following IOC related components can be built:

Breakpoint Tables
For each breakpoint table add the definition

BPTS += <table name>.dbd

Record Support
For each new record type, the following definition should be added to the makefile:

RECTYPES += <rectype>Record.h

and the associated record support file <rectype>Record.dbd must exist.
If a menuXXX.dbd file is present, then add the following definition:

MENUS += menu<name>.h

Expanded Database Definition File
Files containing database definition files are expanded by utility dbExpand and installed into
<top>/dbd. The following variables control the process:

DBDEXPAND += xxxInclude.dbd
DBDNAME = xxxApp.dbd
USER_DBDFLAGS += −I <include path>
USER_DBDFLAGS += −S <macro substitutions>

 4. Building Components

IOC Software Configuration Management 21

DBDINSTALL += xxx.dbd

where the entries are:

DBDEXPAND
A list of files containing database definitions to be expanded.

DBDNAME
The name of the output file to contain the expanded definitions which will be
installed into <top>/dbd.

USER_DBDFLAGS
Flags for dbExpand. Currently only an include path and macro substitution
are supported.

DBDINSTALL
Installs the named files into <top>/dbd without expansion.

Makefile.Host has many facilities for building host components. Definitions given below containing
<arch> can be used to provide settings for use when building for a specific host architecture, and the <arch>
part of the name should be replaced by the architecture concerned, e.g. solaris, hp700 etc. If a
_DEFAULT setting is given but a particular <arch> requires that the default not be used and the required
setting is blank, the value "−nil−" should be assigned to the relevent <arch> variable definition.

Products to be built

PROD
Product names (without execution suffix) to build and install (e.g.
PROD=myprod)

SRCS Source files needed by every PROD (e.g. SRCS=a.c b.c c.c)

<prod>_SRCS
Source files needed to build a specific PROD (e.g.
myprod_SRCS=a.c b.c c.c)

PROD_<arch> os specific products to build and install

<prod>_SRCS_<arch> os specific source files to build a specific PROD

PROD_DEFAULT
products to build and install for systems with no PROD_<arch>
specified

<prod>_SRCS_DEFAULT
source files needed to build a specific PROD for systems with no
<prod>_SRCS_<arch> specified

Building libraries

LIBRARY
Name of library to build. The name should NOT include a prefix or
extension, e.g. specify Ca to build libCa.a on Unix, Ca.lib,
CaObj.lib or Ca.dll on WIN32

LIBSRCS
Source files for building LIBRARY (e.g. LIBSRCS=la.c lb.c
lc.c)

LIBSRCS_<arch> os−specific library source files

 4. Building Components

22 IOC Software Configuration Management

LIBSRCS_DEFAULT Library source files for systems with no LIBSRCS_<arch> specified

SHARED_LIBRARIES Build shared libraries? Must be YES or NO

SHARED_LIBRARIES_<arch> Build shared libraries on <arch>? Must be YES or NO

SHARED_LIBRARIES_DEFAULT
Build shared libraries for os systems with no
SHARED_LIBRARIES_<arch> specified

SHRLIB_VERSION Shared library version number

Compiler flags

USR_CFLAGS C compiler flags for all systems

USR_CFLAGS_<arch> os−specific C compiler flags

USR_CFLAGS_DEFAULT
C compiler flags for systems with no USR_CFLAGS_<arch>
specified

<prod>_CFLAGS prod specific C compiler flags (e.g. xxxRecord_CFLAGS=−g)

USR_CXXFLAGS C++ compiler flags for all systems

USR_CXXFLAGS_<arch> os−specific C++ compiler flags

USR_CXXFLAGS_DEFAULT
C++ compiler flags for systems with no USR_CXXFLAGS_<arch>
specified

<prod>_CXXFLAGS prod specific C++ compiler flags

USR_CPPFLAGS C pre−processor flags (for all makefile compiles)

USR_CPPFLAGS_<arch> os specific cpp flags

USR_CPPFLAGS_DEFAULT cpp flags for systems with no USR_CPPFLAGS_<arch> specified

<prod>_CPPFLAGS
prod specific C pre−processor flags (e.g.
xxxRecord_CPPFLAGS=−DDEBUG)

USR_INCLUDES
Directories to search for include files with −I prefix (e.g.
−I$(EPICS_EXTENSIONS_INCLUDE))

<prod>_INCLUDES
Directories to search for include files when building a specific
product(e.g. −I$(MOTIF_INC))

Linker options

USR_LDFLAGS linker options (for all makefile links)

USR_LDFLAGS_<arch> os specific linker options (for all makefile links)

USR_LDFLAGS_DEFAULT linker options for systems with no USR_LDFLAGS_<arch> specified

<prod>_LDFLAGS prod specific ld flags

USR_LIBS load libraries (e.g. −lXt −lX11) (for all makefile links)

USR_LIBS_<arch> os specific load libraries (for all makefile links)

 4. Building Components

IOC Software Configuration Management 23

USR_LIBS_DEFAULT load libraries for systems with no USR_LIBS_<arch> specified

<prod>_LIBS prod specific ld libraries (e.g. probe_LIBS=X11 Xt)

PROD_LIBS libs needed to link every PROD for all systems

PROD_LIBS_<arch> os−specific libs needed to link every PROD

PROD_LIBS_DEFAULT
libs needed to link every PROD for systems with no
PROD_LIBS_<arch> specified

<lib>_DIR
Directory to search for the specified lib. (For libs listed in
PROD_LIBS, <prod>_LIBS and USR_LIBS)

SYS_PROD_LIBS system libs needed to link every PROD for all systems

SYS_PROD_LIBS_<arch> os−specific system libs needed to link every PROD

SYS_PROD_LIBS_DEFAULT
system libs needed to link every PROD for systems with no
SYS_PROD_LIBS_<arch> specified

<prod>_SYS_LIBS prod specific system ld libraries (e.g. m)

Header files to be installed

INC List of include files to install into $(INSTALL_DIR)/include

INC_<arch>
os specific includes to installed under
$(INSTALL_DIR)/include/os/<arch>

INC_DEFAULT include files to install where no INC_<arch> is specified

Perl, csh, tcl etc. script installation

SCRIPTS scripts to install for all systems

SCRIPTS_<arch> os−specific scripts to install

SCRIPTS_DEFAULT scripts to install for systems with no SCRIPTS_<arch> specified

TCLLIBNAME
List of tcl scripts to install into
$(INSTALL_DIR)/lib/<arch> (Unix hosts only)

TCLINDEX Name of tcl index file to create from TCLLIBNAME scripts

Test programs

TESTPROD
Product names (without execution suffix) to build but not install.
Built from source file having same name.

TESTPROD_SRCS List of source files needed to build every TESTPROD

Documentation

MAN1 MAN2 MAN3 etc.
List of man files to be installed into relevent
$(INSTALL_DIR)/man/man? subdirectory

DOCS
List of text files to be installed into the
$(INSTALL_DIR)/doc directory

 4. Building Components

24 IOC Software Configuration Management

HTMLS_DIR
Hypertext directory to be created as
$(INSTALL_DIR)/html/$(HTMLS_DIR)

HTMLS
List of files to be installed into the
$(INSTALL_DIR)/html/$(HTMLS_DIR) directory

TEMPLATES_DIR
Template directory to be created as
$(INSTALL_DIR)/templates/$(TEMPLATE_DIR)

TEMPLATES List of template files to be installed into $(TEMPLATE_DIR)

Options for other programs

YACCOPT yacc options

LEXOPT lex options

SNCFLAGS snc options

E2DB_FLAGS e2db options

SCH2EDIF_FLAGS sch2edif options

RANLIBFLAGS ranlib options

Miscellaneous settings

CMPLR C compiler selection, TRAD, ANSI or STRICT (default is STRICT)

INSTALL_LOCATION Location of install directory (default $(TOP))

USER_VPATH
List of directories that gnumake should search for source files not in
the current directory

HOST_WARN Are compiler warning messages desired (YES or NO) (default is NO)

HOST_OPT Is compiler optimization desired (default is NO optimization)

STATIC_BUILD Is static build desired (YES or NO) (default is NO)

Facilities for building Java programs

CLASSES Names of Java classes to be built and installed

TESTCLASSES Names of Java classes to be built

PACKAGE Names of Java package to be installed

JAR Name of Jar file to be built

JAR_INPUT Names of files to be included in JAR

MANIFEST Name of manifest file for JAR

Facilities for Windows 95/NT resource (.rc) files

RCS Resource files needed to build every PROD

<prod>_RCS Resource files needed to build a specific PROD

<prod>_RCS_<arch> os specific resource files to build a specific PROD

 4. Building Components

IOC Software Configuration Management 25

 <top>/xxxApp/src/Makefile.Vx

Note that the rules for Makefile.Vx are older and subtly different to those for Makefile.Host. The
following components can be built:

Record Support
For each new record type, the following definitions must be added to the makefile

LIBOBJS += <rectype>Record.o

and both source files <rectype>Record.c and <rectype>Record.dbd must exist.
Device, Driver, other C modules

For each such module, add a definition:

LIBOBJS += <name>.o

All such files will be combined into the library specified by LIBNAME. It is also possible to
generate object files not placed in LIBNAME by using either of the definitions:

PROD += <name>.o
TARGETS += <name>.o

Both will cause the specified file to be generated, but PROD will also install the generated
file into <top>/bin/<target_arch>.

Library files
A file containing all LIBOBJS is installed into <top>/bin/<arch> with the name specified by
LIBNAME. For example:

LIBNAME = xxxLib

State Notation Programs
For each state notation program, add the definition:

LIBOBJS += <name>.o

The state notation programs must be called <name>.st.
Scripts, etc.

A definition of the form:

SCRIPTS += <name>

results in file <name> being installed from the src directory to the
<top>/bin/<arch> directory.

iocCore and seq
In order to have iocCore and seq in the bin directory where the standard st.cmd file expects
to find them, the following must appear:

INSTALLS += iocCore seq

 4. Building Components

26 IOC Software Configuration Management

NOTE: The above line only needs to appear in one application within each <ioctop>.

Other definitions:

USR_CFLAGS C compiler flags

<prod>_CFLAGS product specific C compiler flags

USR_CXXFLAGS C++ compiler flags

<prod>_CXXFLAGS product specific C++ compiler flags

CPPFLAGS cpp flags

<prod>_CPPFLAGS product specific cpp flags

USR_INCLUDES Include directory (e.g. −I$(EPICS_EXTENSIONS_BIN))

USR_LDFLAGS linker options

<prod>_LDFLAGS product specific ld flags

INC header files to install

BIN_INSTALLS Files in any directory to install to $(INSTALL_BIN)

YACCOPT yacc options

LEXOPT lex options

SNCFLAGS snc options

<prod>_SNCFLAGS product specific state notation language flags

VX_WARN Compiler warning messages desired (YES or NO) (default NO)

VX_OPT Is compiler optimization desired (YES or NO) (default is NO optimization)

INSTALL_LOCATION Installation directory (defaults to $(TOP))

 <top>/xxxApp/xxxDb/Makefile.Host

This makefile creates and installs databases and related files.

Databases

Supported are:

• Plain databases

♦ from dct/gdct/editor generated source files (*.db)
♦ from CapFast schematics (*.sch)

• Template generated databases

♦ template database from dct/gdct/editor generated source file (*.template)

 4. Building Components

IOC Software Configuration Management 27

♦ template database from CapFast schematic (*.sch)
♦ substitutions file from editor generated source (*.substitutions)
♦ substitutions file generated by a script (e.g. querying a relational database)

• Database optimization using the dbst tool (i.e. removing all fields with default values)

For template generated databases either the fully inflated database or the template and substitutions files may
be installed (so the IOC may load the database using dbLoadRecords() or dbLoadTemplate()).

For all these types of databases, the names of the files to install have to be specified. Make will figure out
how to generate these files:

DB += xxx.db
Generates xxx.db depending on which source files exist. If xxx.db is template generated,
the inflated database will be installed.

DB += xxx.template xxx.substitutions
Generates and installs these files, i.e. the database must be inflated on the IOC using
dbLoadTemplate().

In order to record dependency information correctly all template files that are needed but not installed (i.e.
those not listed in DB), must be added to the USES_TEMPLATE variable:

USES_TEMPLATE += yyy.template
USES_TEMPLATE += $(SHARE)/installDb/zzz.template

If specified with a path (full or relative), the templates will be soft linked (UNIX) or copied (WIN) into the
O.<arch> directory. After the first make run, template dependencies will be generated automatically.

If one or more xxx.substitutions files are to be created by script, the script name must be placed in the
CREATESUBSTITUTIONS variable (e.g. CREATESUBSTITUTIONS=mySubst.pl). This script will be
executed by gnumake with the prefix of the substitution file name to be generated as its argument.

NOTE: If (and only if) there are script generated substitutions files, the prefix of any inflated database's name
may not equal the prefix of the name of any template used within the directory.

Other definitions:

E2DB_FLAGS e2db options

SCH2EDIF_FLAGS sch2edif options

Related Files

Expanded Database Definition File
Files containing database definition files are expanded by utility dbExpand and installed into
<top>/dbd. The following variables control the process:

DBDEXPAND += xxxInclude.dbd
DBDNAME = xxxApp.dbd
USER_DBDFLAGS += −I <include path>

 4. Building Components

28 IOC Software Configuration Management

USER_DBDFLAGS += −S <macro substitutions>

DBDINSTALL += xxx.dbd

where the entries are:

DBDEXPAND
A list of files containing database definitions to be expanded.

DBDNAME
The name of the output file to contain the expanded definitions which will be
installed into <top>/dbd.

USER_DBDFLAGS
Flags for dbExpand. Currently only an include path and macro substitution
are supported.

DBDINSTALL
Installs the named files into <top>/dbd without expansion.

Breakpoint Tables
For each breakpoint table add the following definition

BPTS += <table name>.dbd

 <top>/iocBoot/Makefile

This executes gnumake in each iocxxx subdirectory.

<top>/iocBoot/iocxxx/Makefile

This makefile has a rule to generate the cdCommands file. Make sure that the definition:

ARCH = <arch>

refers to the correct architecture for your IOC processor.

Since cdCommands is generated, the user created and/or modified files can be independent of location,
using the cdCommands definitions to provide path names where needed. See 3.2. Directory Structure:
cdCommands for details.

 4. Building Components

IOC Software Configuration Management 29

 4. Building Components

30 IOC Software Configuration Management

 5. CVS Reference
The CVS utility is used to put all user editable files under source/release control. This section gives a brief
description of the commands normally used by application developers. Consult the CVS manual for more
details.

 CVSROOT

Your environment variable CVSROOT should point to the CVS repository for IOC Applications. The
following command displays the location of CVSROOT:

echo $CVSROOT

For example, at APS/ASD the command should show:

/usr/local/iocapps/cvsroot

At APS all <top> applications are stored under $CVSROOT/iocsys. Ask your EPICS system manager
about the use of CVS at your site.

 Commands

This section gives a brief description of the CVS commands. Wherever <filename> is shown a list of
filenames is allowed. If <filename> is not specified then most commands apply to the entire directory and all
subdirectories.

A useful option for cvs is:

cvs −n <command>

This will execute any command to demonstrate what it would do without actually making any changes to the
current directory or the repository.

help
Typing

cvs help

gives overall cvs help.
checkout

To check out an entire <top> area issue the commands:

cd <anywhere>
cvs checkout iocsys/<top>

This will retrieve the latest version of iocsys/<top> into
<anywhere>/iocsys/<top>

watch

IOC Software Configuration Management 31

Files (or complete directory trees including and entire <top> area) can have a watch placed
on them. When a watch is placed on a directory cvs creates working copies read only. Users
must execute a cvs edit command to obtain a read/write file. Facilities are provided to list all
people editing a file and to be sent an e−mail message whenever someone executes the cve
edit or commit commands for a watched file. Read the CVS manual for details.

edit
If you want to edit a file and it is read only because a watch is in effect then execute the
command:

cvs edit <filename>

unedit
If you have started editing a file and decide to abandon your changes or not make any
changes issue the command:

cvs unedit <filename>

add
The command:

cvs add <filename>

places a directory or file under CVS control. This command must be given for each directory
and file to be added to the repository. A subsequent commit command will also be required.

remove
The command:

cvs rm <filename>

removes the specified file from the repository. The file is not actually deleted but is moved to
the "attic". Thus previous versions can still be retrieved.

diff
The command:

cvs diff <filename>

compares the working copy of the file with the latest version in the repository.

The diff command has options that allow you to see the differences between any two versions
committed to the repository.
update

The command:

cvs update −d <filename>

brings the development area into sync with the latest versions committed to the repository. A
message starting with U is given for each file or directory that is updated. If the message
starts with M the file named has been modified in this directory. A message starting with the
letter C means that a conflict was found between the working file and a change in the

 5. CVS Reference

32 IOC Software Configuration Management

repository. Conflicts must be resolved manually (edit the file and look for regions bounded
by <<<<<< ====== and >>>>>> characters).

The option −d means add any new subdirectories that have been created in the repository.
commit

The command:

cvs commit <filename>

commits changes to the repository. You are asked for comments via your favorite editor.
status

The command:

cvs status <filename>

shows the status of the file. The −v option shows all tag information for the file.
log

The command:

cvs log <filename>

displays the commit messages for all versions of the specified file.
tag

The command:

cvs tag <official release name>

is used by the Application System Manager to tag official application releases.
import

This command is used to put an existing tree of files into the cvs repository. Assume that a
developer has created a new directory tree for a new <top> application in a directory
newapp. It can be imported into the repository via the command:

cvs import −m "Creating" iocsys/newapp newapp start

.cvsignore file

Any directory can contain a file with the name .cvsignore. It contains a list of file and directory names
and filename patterns that should be ignored by CVS. For example all generated directories and files should
be listed in .cvsignore.

.cvsrc file

CVS will use a file called .cvsrc in your home directory to specify default options to its commands. The
following settings are strongly recommended for use by all users. Note that the gap between the CVS
command name and the option letters must be a tab character, not just spaces:

 5. CVS Reference

IOC Software Configuration Management 33

checkout −P
update −d −P
export −kv

The −P options to checkout and update cause CVS to remove any empty directories. Update's −d option tells
it to create any directories that have been added to the repository since the last update. The −kv flags to
export cause it to replace any RCS keywords (e.g. Id) with strings which will not be changed if the
exported source code is later imported into a different repository.

 5. CVS Reference

34 IOC Software Configuration Management

 6. Creating <top> Applications

6.1. makeBaseApp

makeBaseApp is a perl script that creates application areas. It can create the following:

• <top>/Makefile
• <top>/config − Build configuration subdirectory and associated files
• <top>/xxxApp − A set of directories and associated files for a major sub−module.
• <top>/iocBoot − A subdirectory and associated files.
• <top>/iocBoot/iocxxx − A subdirectory and files for a single ioc.

makeBaseApp creates directories and then copies template files into the newly created directories while
expanding macros in the template files. EPICS base provides two sets of template files: simple and example.
These are meant for simple applications. Each site, however, can create its own set of template files which
may provide additional functionality. This section describes the functionality of makeBaseApp itself, the next
section provides details about the simple and example templates.

 Usage

makeBaseApp has three possible forms of command line:

<base>/bin/<arch>/makeBaseApp.pl −l [options]
List the application templates available. This invocation does not alter the current directory.

<base>/bin/<arch>/makeBaseApp.pl [−t type] [options] app ...
Create application directories.

<base>/bin/<arch>/makeBaseApp.pl −i [options] ioc ...
Create ioc boot directories.

Options for all command forms:

−b base
Provides the full path to EPICS base. If not specified, the value is taken from the
EPICS_BASE entry in config/RELEASE. If the config directory does not exist, the
path is taken from the command−line that was used to invoke makeBaseApp.

−T template
Set the template top directory (where the application templates are). If not specified, the
template path is taken from the TEMPLATE_TOP entry in config/RELEASE. If the
config directory does not exist the path is taken from the environment variable
EPICS_MBA_TEMPLATE_TOP, or if this is not set the templates from EPICS base are used.

−d
Verbose output (useful for debugging)

Arguments unique to makeBaseApp.pl [−t type] [options] app ...:

IOC Software Configuration Management 35

app
One or more application names (the created directories will have "App" appended to this
name)

−t type
Set the template type (use the −l invocation to get a list of valid types). If this option is not
used, type is taken from the environment variable EPICS_MBA_DEF_APP_TYPE, or if
that is not set the values "default" and then "example" are tried.

Arguments unique to makeBaseApp.pl −i [options] ioc ...:

ioc
One or more IOC names (the created directories will have "ioc" prepended to this name)

−a <arch>
Set the IOC architecture (e.g. mv167). If not specified you will be prompted for this
information. For use with the −i invocation only.

Environment Variables:

EPICS_MBA_DEF_APP_TYPE
Application type you want to use as default

EPICS_MBA_TEMPLATE_TOP
Template top directory

 Description

To create a new <top> issue the commands:

mkdir <top>
cd <top>
<base>/bin/<arch>/makeBaseApp.pl −t <type> <app> ...
<base>/bin/<arch>/makeBaseApp.pl −i −t <type> <ioc> ...

makeBaseApp does the following:

• EPICS_BASE is located by checking the following in order:

♦ If the −b option is specified it is used.
♦ If a <top>/config/RELEASE file exists and defines a value for EPICS_BASE it is used.
♦ It is obtained from the invocation of makeBaseApp. For this to work, the full path name to

the makeBaseApp.pl script in the EPICS base release you are using must be given.
• TEMPLATE_TOP is located in a similar fashion:

♦ If the −T option is specified it is used.
♦ If a <top>/config/RELEASE file exists and defines a value for TEMPLATE_TOP it is

used.
♦ If EPICS_MBA_TEMPLATE_TOP is defined it is used.
♦ It is set equal to <epics_base>/templates/makeBaseApp/top

• If −l is specified the list of application types is listed and makeBaseApp terminates.

 6. Creating <top> Applications

36 IOC Software Configuration Management

• If −i is specified and −a is not then the user is prompted for the IOC architecture.
• The application type is determined by checking the following in order:

♦ If −t is specified it is used.
♦ If EPICS_MBA_DEF_APP_TYPE is defined it is used.
♦ If a template defaultApp exists, the application type is set equal to default.
♦ If a template exampleApp exists, the application type is set equal to example.

• If the application type is not found in TEMPLATE_TOP, makeBaseApp issues an error and
terminates.

• If Makefile does not exist, it is created.
• If directory config does not exist, it is created and populated with all the config files.
• If −i is specified:

♦ If directory iocBoot does not exist, it is created and the files from the template boot
directory are copied into it.

♦ For each <ioc> specified on the command line a directory iocBoot/ioc<ioc> is
created and populated with the files from the template (with ReplaceLine() tag
replacement, see below).

• If −i is NOT specified:

♦ For each <app> specified on the command line a directory <app>App is created and
populated with the directory tree from the template (with ReplaceLine() tag
replacement, see below).

Tag Replacement within a Template

When copying certain files from the template to the new application structure, makeBaseApp replaces some
predefined tags in the name or text of the files concerned with values that are known at the time. An
application template can extend this functionality as follows:

• Two perl subroutines are defined within makeBaseApp:

♦ ReplaceFilename − This substitutes for the following in names of any file taken from the
templates.

◊ _APPNAME_
◊ _APPTYPE_

♦ ReplaceLine − This substitutes for the following in each line of each file taken from the
templates:

◊ _USER_
◊ _EPICS_BASE_
◊ _ARCH_
◊ _APPNAME_
◊ _APPTYPE_
◊ _TEMPLATE_TOP_
◊ _IOC_

• If the application type directory has a file named Replace.pl, it can:

 6. Creating <top> Applications

IOC Software Configuration Management 37

♦ Replace one or both of the above subroutines with its own versions.
♦ Add a subroutine ReplaceFilenameHook($file) which is called at the end of

ReplaceFilename.
♦ Add a subroutine ReplaceLineHook($line) which is called at the end of

ReplaceLine.
♦ Include other code which is run after the command line options are interpreted.

6.2. Application Templates Supplied With Base

EPICS base supplies the following sets of template files

• exampleApp
• exampleBoot
• simpleApp
• simpleBoot

simpleApp creates an xxxApp with a Db and src directory. Each directory contains skeleton makefiles.
simpleBoot creates an iocBoot directory and iocBoot/iocxxx directories. Each directory contains
makefiles. The iocxxx directories also contain a skeleton st.cmd file.

6.3. Example Application

exampleApp and exampleBoot create a complete example application. They contain the following files.

<app>App
 src/
 Makefile
 Makefile.Host
 Makefile.Vx
 caExample.c
 sncExample.st
 xxxRecord.dbd
 xxxRecord.c
 devXxxSoft.c
 <app>Include.dbd
 base.dbd
 baseLIBOBJS
 Db/
 Makefile
 Makefile.Host
 dbExample1.db
 dbExample2.template
 dbExample2.substitutions

iocBoot/
 Makefile
 nfsCommands
 ioc<app>
 Makefile
 st.cmd

 6. Creating <top> Applications

38 IOC Software Configuration Management

caExample.c

A Host application that interfaces to Channel Access. It is executed from a Unix shell by
issuing the command:

caExample "pvname"

It issues a Channel Access get request for the specified process variable and prints the value. If you have
booted an IOC from the example then try the following:

• On the IOC console type the command:

dbl

This produces a list of all the records the IOC contains.
• On the host system change to the directory: <top>/bin/<host_arch>/
• Execute the command:

caExample "pvname"

where pvname is one of the record names shown by dbl

dbExample1.db

This is a file containing some example record instances. Each name starts with $(user),
which will be expanded into the login name of the person who executed makeBaseApp at
database load time. The records are:

$(user)aiExample
A passive ai (analog input) record which obtains its input from record
$(user)calcExample.

$(user)calcExample
This is a calc (calculation) record that acts as a counter that continually
counts from 0 to 9. It is scanned once a second. It also has a forward link to
$(user)aiExample. Since the latter is passive it will also scan once a
second.

$(user)xxxExample
This is a sample record of type xxx, as described below. It is a passive
record. You can change its VAL field from a Channel Access client or by
using the IOC command dbpf.

dbExample2.template
dbExample2.substitutions

This is another example of record instances. The record instance file is generated from a
template, which is instantiated using the entries in the substitutions file. Each record name in
the template file starts with $(USER), which is replaced by the login name of the person

 6. Creating <top> Applications

IOC Software Configuration Management 39

who executed makeBaseApp when the template is instantiated at build time. Each line in the
substitutions file creates a two record database, whose records are described above
(aiExample and calcExample).

sncExample.st

This is a state notation language example for compilation by the state notation compiler and
execution on the IOC by sequencer. It prints a message on the IOC console every time the
VAL field of the record <user>xxxExample transits through the value 5.0. This time the
<user> part of this record name is instantiated when the template is created by
makeBaseApp.

xxxRecord.dbd xxxRecord.c

A skeleton record support module. The record support module is the one described in the
Application Developer's Guide.

devXxxSoft.c

A device support module for xxxRecord. The device support module provides synchronous
support for the record support.

6.4. st.cmd

This file is the vxWorks startup file. The version created by makeBaseApp contains:

Example vxWorks startup file
#Following must be added for many board support packages
#cd <full path to iocxxx>
< cdCommands

#< nfsCommands

cd appbin
ld < iocCore
ld < seq
ld < exampleLib

cd startup
dbLoadDatabase("../../dbd/exampleApp.dbd")
dbLoadRecords("../../db/dbExample1.db","user=<user>")
dbLoadRecords("../../db/dbExample2.db")

iocInit
seq &snctest

 6. Creating <top> Applications

40 IOC Software Configuration Management

The commands dbLoadDatabase, dbExpand, dbLoadRecords and dbLoadTemplate are
described in the "Database Definition" chapter of the Application Developer's Guide.

The cdCommands file is created when gnumake is run, and defines several vxWorks variables for use with
cd later on in the startup file. Definitions are provided for:

• appbin − A full path name to <top>/bin/<target_arch>
• startup − A full path name to <top>/iocBoot/iocxxx
• share − A full path name to share if SHARE is defined in <top>/config/RELEASE

NOTE: From release 3.13.2 the name appbin becomes topbin. Other definitions are also created by
cdCommands. See the description of <top>/iocBoot/iocxxx/Makefile in section 4.3 for details.

The first ld command loads the core EPICS components. The files iocCore, seq and exampleLib are
installed when gnumake is run in the <top>/xxxApp/src directory. exampleLib contains the
executable for all record, device, and driver support as well as any other application specific object modules.
If an IOC wants to use support generated in a sub−application src directory, this statement will have to be
changed to coincide with the LIBNAME value.

The dbLoadDatabase command loads the definitions of all menus, record types, device support, driver
support, and breakpoint tables needed in this IOC. These are actually expanded files created by dbExpand
and installed into dbd. If an application wants to use database definitions generated in a sub−application src
directory, this statement will have to be changed to coincide with the DBDNAME value.

The command:

dbLoadRecords("../../db/dbExample1.db","user=<user>")

is an example command for loading record instances using macro substitution at load time. One of these
commands is supplied for each record instance file. Note that the <user> parameter in the example will
have been replaced by the login name of the person running makeBaseApp.

The iocInit command initializes the EPICS system.

The seq command shows how to start a sequence (state notation language) program.

 6. Creating <top> Applications

IOC Software Configuration Management 41

 6. Creating <top> Applications

42 IOC Software Configuration Management

 7. APS/ASD Configuration Management Procedures

 7.1. Overview

This section describes a set of procedures for managing ioc software. EVERYTHING is for the sole purpose
of supporting iocs, thus it does not discuss management of high level applications. The procedures are
intended for an operational facility. During commissioning activities some more relaxed procedures may be
appropriate.

The Configuration Management process described here relies on a certain level of understanding and
responsibility by the engineers who implement it, and may not always rigorously maintain a previous "known
working" set of software online for an IOC to be rolled back to in the event of problems while making
changes. It is always possible to retrieve the last version from the system backup tapes, but this may not be
acceptable for some high−availability applications. Sites desiring more beaurocratic but "safer" procedures
may wish to contact JLAB or SNS to find out about their approaches.

The key features of the APS Configuration Management System are:

• CVS
All human created/edited files are put in the cvs repository dedicated to ioc applications

• <top>
The complete set of ioc software is divided into <top> areas. Each <top> area is managed
independently. Each follows its own development and release schedule.

• <ioctop>
This is a <top> dedicated to a set of iocs that are booted from <ioctop>/iocBoot/iocxxx

• <supporttop>
A <top> area that contains products shared across multiple <ioctops>.

• Releases
Each <top> can have multiple releases.

• Operations and Development areas
Releases of <top> appear in an operations tree. Operational iocs are booted from this tree.
Developers can checkout any <top> in a private tree.

• <supporttop> releases are not modified in the operations tree.
Because a <supporttop> is used by multiple <ioctops> it should never be modified in the
operations tree. Any modifications require a new release. It may be appropriate to relax this rule
during a period of commissioning.

• <ioctop> releases may be modified in the operations tree.
This makes it easy to make small ongoing changes to operational systems.

 Background

Before EPICS base release 3.13, APS/ASD used an Application Source Release control system called appSR.
appSR uses SCCS for source file control. Since appSR was written several things that impact S/R control
have changed.

IOC Software Configuration Management 43

• With release 3.13 the method of configuring record/device/driver support changed.
• Both EPICS base and extensions have switched from sccs to cvs.
• base/config, i.e. definitions and rules for GNU make, has evolved so that is now possible to

create makefiles that are much simpler, more powerful, and extendable.

For the above reasons we decided to redo the APS/ASD IOC Applications S/R control system. Our goals
were:

• SCCS will no longer be used.
• All functionality performed by appSR will be done with a combination of CVS and GNU make.

A major decision was What directory structure should we use. Before the original appSR was written a lot of
discussion went into this topic. There were several meetings between the Application Developers and Bob
Zieman, who implemented appSR. This directory structure was used to implement the entire APS/ASD
contol system software. Thus a lot of correct decisions were made. The only major problem is that it was not
easy to share code, mainly record/device/driver support, across <top> areas. This resulted in sharing by
copying source modules from one <top> area to another. When one developer would make changes to a
source module, the other developers would often not even be aware of the changes. Thus over time the source
modules evolved in different directions.

Since the overall directory layout appears to be correct, it is kept in the new system. A brief description of the
APS/ASD environment may help explain why the directory layout works.

• APS accelerator

♦ The APS accelerator complex is composed of four major subsystems: Linac, PAR (Positron
Accumulator Ring), Booster Syncrotron, and Storage Ring. Each subsystem is controlled by
a separate set of IOCs. Thus it is entirely appropriate to have separate <top> areas for each
subsystem.

♦ Each subsystem can be viewed as a separate set of applications, e.g. RF, Magnet Power
Supplies, Diagnostics, etc.

• IOC responsibilities.

♦ A particular application may be spread over multiple IOCs. For example the control for
storage ring applications is normally spread over many IOCs just because of the physical size
of the storage ring.

♦ A particular IOC may contain parts of multiple applications. For example vacuum and power
supplies normally share IOCs.

• Application Developers.

♦ For the Linac, a single Application Developer has final responsibility for all controls
applications, i.e. RF, vacuum, Diagnostics, etc.

♦ For the par, booster, and sr, Application Developers are assigned application areas. For
example the same person is responsible for almost all diagnostic controls for the par, booster,
and storage ring.

One other topic to discuss before describing the overall directory structure is the idealized Application

 7. APS/ASD Configuration Management Procedures

44 IOC Software Configuration Management

Development Cycle. It consists of the following steps:

• Define I/O requirements.
This involves meeting with the user, in this case the engineers who are responsible for the application
in order to decide the types and number of I/O modules needed.

• Assemble control hardware and software.
This includes IOCs, I/O modules, software device/driver support, etc. If EPICS software support is
not already available, it has to be written and tested.

• Build databases, sequence programs, etc.

In reality there is overlap between these steps. In addition as new needs arise the three steps again have to be
performed. However, an application developer tends to spend a large part of his/her attention on each step
before moving on to the next step.

7.2. CVS Repository for IOC Applications

The cvs tree is arranged in two parts:

$CVSROOT/
 support/
 <supporttop1>/
 <supporttop2>/
 ...
 ioc/
 <ioctop1>/
 <ioctop2>/
 ...

So at APS/ASD the repository tree is:

$CVSROOT/
 support/
 base/
 allenBradley/
 mpf/
 share/
 bitBus/
 radMon/
 switchgear/
 runcontrol/
 motorTransform/
 saverestore/
 PSCU/
 ...
 ioc/
 sr/
 mcr1/
 runcontrol/
 tune/
 s40misc/
 srbpm/
 ...
 ...

 7. APS/ASD Configuration Management Procedures

IOC Software Configuration Management 45

7.3. Adding a new <top> to the CVS repository

This section provides guidelines for creating a new <top> application that will be maintained in the local cvs
repository, i.e. it does NOT apply to <top> applications maintained somewhere else.

Assume you have a directory tree starting at <working>/<newtop> that you want to put in the cvs repository
at location $CVSROOT/<system>/<newtop>Just issue the commands:

cd <working>/<newtop>
gnumake clean uninstall
cvs import −m "Creating" <system>/<newtop> <newtop> start

where <system> is either support or ioc.

A .cvsignore file should appear in all <top> areas and also in all
<top>/iocBoot/ioxxxx directories.

<top>/.cvsignore should contain:

bin
include
lib
man
dbd
templates
doc
db
javalib
html

<top>/iocBoot/iocxxx/.cvsignore should contain:

cdCommands

.cvsignore files are added to the repository just like any other file.

 Documentation and Release Notes

Each <top> should provide some documentation describing the application and also release notes describing
each release. The release notes should mention any dependencies on other <top> applications it uses. The
recommended documentation format, at least for release notes, is HTML. These documents can be put in any
directory containing a Makefile.Host. Adding the lines:

HTMLS += xxx.html
HTMLS_DIR = .

to this Makefile will result in xxx.html being installed into the directory
$(INSTALL_LOCATION)/html/., where $(INSTALL_LOCATION) is normally <top> The
HTMLS_DIR value can be used to target a subdirectory under $(INSTALL_LOCATION)/html, useful for
longer documents with many sections and graphics files.

 7. APS/ASD Configuration Management Procedures

46 IOC Software Configuration Management

7.4. Operations Directory Structure

An operations tree has the structure:

<operations>/
 RX.XX.X/
 support/
 <supporttop1>/
 1−1/
 ...
 <supporttop2>/
 1−1/
 ...
 ...
 ioc/
 <ioctop1>/
 1/
 ...
 <ioctop2>/
 1/
 RY.YY.Y/
 ...

NOTES

• A new RY.YY.Y directory will be needed whenever a significantly changed version of base is
needed which requires that all ioc and support applications be rebuilt to use the new version. Some
examples of such major changes are:

♦ A new version of vxWorks is being used.
♦ The underlying epics structures are modified.
♦ The set of fields in dbCommon are changed.

• <supporttop>/x−y releases are created via cvs export commands because it is not
permissible to modify an operational <supporttop>.

• <ioctop>/x releases are created with a cvs checkout command because it is permissible to
modify an operational ioc release. See below for reasons.

If only bug fixes are being applied to EPICS base then a new RX.XX.X directory is generally not needed.
Instead a new support/base/x−y−site release can be created.

A portion of the actual APS/ASD operations area is:

/usr/local/iocapps/
R3.13.1/
 support/
 base/
 3−13−1−asd1/ This is actually 3.13.1 with bug fixes
 share/
 1−3/ What is left after unbundling
 allenBradley/
 1−1/

 7. APS/ASD Configuration Management Procedures

IOC Software Configuration Management 47

 mpf/
 1−3/
 bitBus/
 1−1/
 radMon/
 1−1/
 switchgear/
 1−1/
 runcontrol/
 1−1/
 motorTransform/
 1−1/
 saverestore/
 1−1/
 PSCU/
 1−1/
 ioc/
 sr/
 1/
 mcr1/
 1/
 runcontrol/
 1/
 tune/
 1/
 s40misc/
 1/
 srbpm/
 1/

others as they get converted to 3.13.1

7.5. Support Management

7.5.1 Overview

A <supporttop> must follow a few simple rules in order to be used by an <ioctop>.

• If it uses EPICS_BASE or another <supporttop>, it must have a config/RELEASE file.
• It must install everything intended for use by an <ioctop> into a directory immediately under its

<top>.

Thus it must have the following directory structure:

<top>
 config/
 RELEASE
 bin/
 <arch>/
 ...
 lib/
 <arch>/

 7. APS/ASD Configuration Management Procedures

48 IOC Software Configuration Management

 ...
 dbd/
 db/
 include/

NOTE: Most <supporttop>s will need only a subset of bin, lib, dbd, db and include.

At least the following two types of support areas may be used by an <ioctop>

• A <supporttop> that is developed in the same cvs repository as the <ioctops>
• A <supporttop> that follows the above directory structure but is maintained in a different cvs

repository. Examples are epics base and epics unbundled products such as the allenBradley support.
To allow local bug fixes to be made to any of these remotely obtained products, the following
management procedure is used:

♦ The product is exported from the cvs repository where it is maintained, or otherwise copied
into a local directory area.

♦ This area is then imported into the local cvs repository as a vendor import.

NOTE: EPICS base will follow this procedure. This makes it easy to make local bug fixes rather than
having to create and use a completely new EPICS release for even minor changes.

In addition an application might use commercial products. Since these products are not under our control,
each <ioctop> has to decide how to use the product. Wherever possible, however, the product location
should be defined by a line in the <ioctop>/config/RELEASE file.

7.5.2. Procedures for <supporttop> Maintained in Local Repository

Summary:

• Developers develop in a private area checked out from the main cvs branch.
• When a new version is ready for operations, all changes are committed and a release tag is created.
• Operations creates an exported version of the new version in the operational area.
• If it is necessary to patch an older release, a branch is created based on that release and the patch

applied to the new branch.

Developer's Cookbook

 General Guidelines:

• Have a standard place to do development. At APS/ASD it is recommended that each developer use
the following paths, which should be created with mkdir commands:

<home>/iocapps/RX.XX.X/support

• Checkout ONLY the <supporttop> applications for which you are responsible.

 7. APS/ASD Configuration Management Procedures

IOC Software Configuration Management 49

• If cvs watch on has been set then all files will be checked out read only. If you want to edit a
file, first issue the command:

cvs edit <filename>

DO NOT just issue a chmod to change the file permissions.
• Try to do all development on the main cvs branch. It should seldom be necessary to create branches

for <supporttops>. If it is get help unless you understand the procedures described below. This
section only discusses changes on the main branch.

• If a new application is being created get help unless you understand the procedures described
previously.

 Initial Checkout:

A private working version of <supporttop> is checked out via the commands:

cd <support>
cvs checkout −d <supporttop> support/<supporttop>
cd <supporttop>

all development done here

 Tagging a new release:

When changes have been made and it is time for operational use, all changes should be committed and a new
release tag created:

cd <support>/<supporttop>
make sure all changes have been committed

cvs tag Rx−y

Tags should take the form Rx−y, where x is a major release number for the module and y is a minor release
number. For example the first release is R1−1, the next minor release R1−2, etc.

You can see all previous tags by issuing the commands:

cd <support>/<supporttop>
cvs status −v Makefile

After tagging the new release you should notify operations to install it in the operations tree.

 Creating a tar file:

If you also want to create a tar file of containing the new release for use elsewhere, you should not just tar up
your working directory, but instead use the following commands:

cd <somewhere>
cvs export −kv −d <supporttop>−x.y −r Rx−y support/<supporttop>
tar cf <supporttop>−x.y.tar <supporttop>−x.y

 7. APS/ASD Configuration Management Procedures

50 IOC Software Configuration Management

gzip <supporttop>−x.y.tar

Note that the naming conventions used for the export directory and tar file above (a hyphen `−' separates the
name and release number, and the release number has a period `.' between major and minor parts) are those
used for most open source software. The −kv option to cvs export instructs it to expand RCS keywords
so that they will be preserved without further change if the resulting files are ever imported into a different
CVS repository, thus preserving their history.

 Patching Old Releases

NOTE: This should seldom be necessary.

If it becomes unavoidable to apply patches to an old release instead of upgrading to a newer version, a branch
must be created in the repository to hold these changes. The following procedure demonstrates this:

cvs rtag −b −r Rx−y Bx−y support/<supporttop>
cd <somewhere>
cvs checkout −d <supporttop>/Bx−y −r Bx−y support/<supporttop>
cd <supporttop>Bx−y

make, test and commit changes
cvs tag Rx−y−1

The cvs rtag −b can be issued from anywhere as it creates the branch tag Bx−y by working directly on
the files in the repository. The checkout command specifying −r Bx−y then retrieves that new branch. All
subsequent cvs commands issued in the new area will apply to the branch rather than the versions on the main
trunk. The command cvs tag Rx−y−1 makes a tag for modified version on this branch. A good
convention to follow is that branch releases should have the same tag as the release with −i appended, where
i represents the patch release number for this branch. Thus the first patch is Rx−y−1, the second
Rx−y−2 etc.

Operations Cookbook

 Managing local <supporttop> modules

Installing a new release for use in the Operations Area

Operations installs a new <supporttop> by exporting the new release into the operational directory tree:

cd <operations>/RX.XX.X/support/<supporttop>
cvs −r export −d x−y −r Rx−y support/<supporttop>
cd x−y
gnumake

Note that the operations version is created using cvs export rather than cvs checkout. This means
that no CVS directories appear in the operations version of a <supporttop>. This directory area should
never be modified once operational <ioctops> start using it. If a modification is required a new (possibly

 7. APS/ASD Configuration Management Procedures

IOC Software Configuration Management 51

patch) release must be made using the methods described in this document.

Installing a patch release to the operations area

Patch releases are installed in the operations tree exactly like any other release, using the commands:

cd <operations>/RX.XX.X/support/<supporttop>
cvs −r export −d x−y−i −r Rx−y−i support/<supporttop>
cd x−y−i
gnumake

7.5.3. Managing a <supporttop> from another Repository

This applies to products like EPICS base, allenBradley, mpf, etc. The basic rules are:

• The first time a product is put in the local repository:

♦ It is imported into support/<product> giving a vendor tag reflecting the product and a
release tag reflecting the release version.

♦ Any local modifications that are needed (e.g. changes to config, NOT bug fixes) are
committed on the main branch.

• Any local bug fixes are made on a new branch, NOT the main branch.
• When a new release of the product from the maintainer is to be incorporated:

♦ It is imported again, using the same vendor tag but with a release tag reflecting the new
maintainer's release version number.

♦ Any local changes that occurred on the main branch between the two import operations will
automatically be merged into the new maintainer's release and the result placed at the head of
the main branch.

♦ Any conflicts due to overlapping changes between the newly imported release and local
modifications will be highlighted to be resolved manually.

If possible the local release tags assigned to products maintained elsewhere should identify the imported
release. For example epics base would be imported with a command like:

cvs import −m "import base 3.13.1" support/base base release3−13−1

After making and committing any local configuration changes this would be given a tag of R3−13−1. If it is
necessary to patch this release of base, the first patch tag would be R3−13−1−asd1.

The following examples are for mpf. Assume that the first version of mpf is version 1−1 and the second
version is 2−1.

Importing for the first time

Assume that a tar file containing version 1−1 of mpf has been extracted into the directory <working>/mpf

 7. APS/ASD Configuration Management Procedures

52 IOC Software Configuration Management

cd <working>/mpf
cvs import −m "Import mpf version 1−1" support/mpf mpf release1−1
cd <working>
/bin/rm −rf mpf

Now checkout the new product from the main branch, make local changes, tag it, and delete the working
copy.

cd <working>
cvs checkout −d mpf support/mpf
cd mpf

make and test local configuration changes
cvs commit −m "Configuration changes for release 1−1"
cvs tag R1−1
cd <working>
/bin/rm −rf mpf

Only changes that are needed for the local environment should be made here, for example the
config/RELEASE file should be modified. Bug fixes should NOT be applied here − see below for how to
make bug fixes. The local release tag R1−1 matches the mpf version number, indicating that the software is
identical to that of the official mpf release but with local configuration steps fully made.

Importing a new version

Assume that version 2−1 of mpf has been extracted from a tar file into <working>/mpf:

cd <working>/mpf
cvs import −m "Import mpf version 2−1" support/mpf mpf release2−1

The import will indicate any conflicts that need resolving.
cd <working>
/bin/rm −rf mpf
cvs checkout −d mpf −j release1−1 −j release2−1 support/mpf
cd mpf

Make changes to resolve conflicts and add any new local configuration
 changes needed. The following commit is needed to remove files that have
 not been locally modified and which are not present in the new release.
cvs commit −m "Merged local changes with mpf 2−1"
cvs tag R2−1
cd <working>
/bin/rm −rf mpf

The cvs import command will report any conflicts that have to be merged by hand, and provides
instructions on how to do this if it is necessary. In our example this was the case, and the subsequent cvs
checkout command merged the changes between the two vendor releases onto the main branch.

Applying Local Patches

If it is necessary to make local patches to software that is maintained elsewhere, the changes must be made on
a side branch. If the changes were made on the main branch then importing later versions of the product that
had these changes incorporated would flag these up as conflicts that had to be resolved manually. The
disadvantage is that local bugfixes which have not been included in an official release will have to be
re−applied on another new branch, but this can be regarded as an incentive to ensuring that the official

 7. APS/ASD Configuration Management Procedures

IOC Software Configuration Management 53

maintainer be sent copies of all bug fixes found.

Assume that it is necessary to apply a patch to version 1−1 of mpf:

cvs rtag −b −r R1−1 B1−1 support/mpf
cd <working>
cvs checkout −d mpf −r B1−1 support/mpf
cd mpf

make any necessary changes and commit them
cd <working>/mpf
cvs tag R1−1−asd1
cd <working>

The new release tag that operations should install is R1−1−asd1.

Exporting a new release to the Operations Area

Releases are prepared for operations just like for a <supporttop> being maintained in the local repository.

7.6. IOC Management

7.6.1. Overview

The procedures for <ioctop>s are designed so that simple changes to the operational tree are easy. It is
expected that there will be frequent (weekly or even daily) small changes such as adding database records,
changing HOPR, LOPR values, etc. All these minor changes are made on a side branch rather than the main
branch of the cvs tree. Developers check out a private copy of this branch. The operational area, from which
the iocs are booted, has the same branch checked out. Changes appear in the operational area by a developer
committing changes and operations performing cvs updates.

The following diagram shows how an <ioctop> evolves over time.

 7. APS/ASD Configuration Management Procedures

54 IOC Software Configuration Management

A new branch is needed when:

• It is not possible to boot all iocs from the same directory structure, for example while converting to a
new release of EPICS base.

• Major changes are being made to <ioctop> and it must be possible to quickly revert to the old
working system.

Assume the current operational system is

<operations>/R3.13.1/ioc/<ioctop>/1

Each <ioctop> application developer has a private area

<somewhere>/ioc/<ioctop>/1

Both of these areas have been checked out via the commands

cd <somewhere>/ioc/<ioctop>
cvs checkout −d 1 −r B1 ioc/<ioctop>
cd 1

All cvs commands issued in an <ioctop>/1 area will be made to the B1 cvs branch. Until it is time for a
new release no changes are made to the main cvs branch.

Assume that a new release of epics is available, which requires a new side branch for <ioctop>. The
following steps are taken by whoever is preparing it for the new epics release:

 7. APS/ASD Configuration Management Procedures

IOC Software Configuration Management 55

 Step 1

The main branch is checked out of the repository and the B1 changes merged back into the main branch.

cd <somewhere>
cvs checkout −d <ioctop> ioc/<ioctop>
cd <ioctop>
cvs update −d −j B1
cvs commit −m "B1 merged into main branch"

This is shown in the diagram as "B1 merged into main branch".

 Step 2

Changes can be made to <ioctop> and committed without affecting the B1 branch. During this step the
major development work needed is done on the main cvs branch.

 Step 3

When it is ready for use by other application developer's and/or operations, a new side branch B2 is created.
The R2 tag also created below marks the file versions at the root of the new branch for later reference.

cd <somewhere>/<ioctop>
cvs commit −m "changes for new epics release"
cvs tag R2
cvs tag −b B2
cd <somewhere>
/bin/rm −rf <ioctop>

 Step 4

The new area is checked out via the commands:

cd <somewhere>/<ioctop>
cvs checkout −d 2 −r B2 ioc/<ioctop>

Changes can be made independently on either branch B1 or B2, and iocs can be booted from either area.
Once all iocs are successfully using B2, the B1 cvs branch, operations 1 area, and any 1 private areas are
"abandoned", i.e. they no longer need to be maintained. The abandoned branch ends in a hollow box in the
diagram.

IMPORTANT WARNING. While B1 and B2 are both active, it is the application developer and operations
responsibility to make any changes to both releases. This starts from the time step 2 is performed until B1 is
no longer active. The diagram identifies this period with "dual changes". CVS can help with this task, but in
most cases it will probably be easier and just as quick to make and commit the same change in both areas.

The diagram shows that the same steps are followed for branch B3.

 7. APS/ASD Configuration Management Procedures

56 IOC Software Configuration Management

 Why is minor development done on a branch?

Development is done on a branch so that when a new branch becomes the operational branch, nothing has to
be done to get the operational tree on the latest release − it is already using it!

If development were done on the main cvs branch, then when new development got to the point where it was
desired to make this the new operations release, a new release would have to be generated on a side branch
and the official area switched to use the new release. In practice at APS this time has often only been known
once the system was already operational. The only easy way to prove that the new release is really ready is to
run it in an operational mode. By then however, operations staff are already saying: "It works, please leave it
alone."

 Versions of a branch

<ioctop> developers may want to create a tag on a branch before and after making extensive changes to
the branch or before merging a branch back onto the main tree. These tags should always be of the form
Rx−y where x is the branch and y is a minor release number. This if the current branch is B2 then the tags are
R2−1, R2−2, These tags are NOT created for the purpose of creating operational releases. They are only to
tag snapshots of the cvs repository at key moments.

7.6.2. Developer's Cookbook

 General Guidelines:

• Have a standard place to do development. Each site may establish guidelines. At APS/ASD it is
recommended that each developer work in an area under their home directory as follows:

<home>/iocapps/RX.XX.X/ioc/

• Checkout ONLY the <ioctop>s for which you are responsible.
• If cvs watch on has been set then all files will be checked out read only. If you want to edit a file

issue the command:

cvs edit <filename>

DO NOT just issue a chmod to change the file permissions.
• Do all development on the correct cvs branch. If it is time to create a new cvs branch for an <ioctop>

get help unless you understand the procedures described previously.
• Be careful. Remember that the operations area is using the same cvs repository as you.
• Whenever possible use the same config/RELEASE definitions as operations.

 7. APS/ASD Configuration Management Procedures

IOC Software Configuration Management 57

 Check Out an <ioctop> branch

cd <ioc>/<ioctop>
cvs checkout −d x −r Bx ioc/<ioctop>
cd x

all development is done here

where x is the branch desired. For example if B1 is the current branch than x is 1.

 Committing Changes

Be Careful. Remember that when operations performs updates and builds in the operations tree the
operational system will be using your modifications. During operational periods only changes really needed
for operations should be committed.

cd <ioc>/<ioctop>/x
commit ONLY the files actually changed

Now prepare instructions for what operations should do. The instructions should specify cvs updates and
makes at the lowest level possible. Do NOT just give instructions to go to <ioctop>/x and update and
rebuild.

7.6.3. Operations Cookbook

Ask for detailed instructions from developer's about where to perform cvs updates and makes.

7.7. Additional Guidelines for Operations

 Backup each <ioctop>

Because <ioctop>s can be modified, it is possible that a developer could perform cvs commits that will
break an operational system when a cvs update is done in the operations area. In order to prevent a major
problem, procedures should be in place to backup all <ioctop>s on a regular schedule when the facility is
on an operational period. Procedures should also be in place to restore a particular <ioctop> from the
backup.

Application developers must be aware that only minor changes should be made during operational periods.
When a developer makes a change commits should be made only to the necessary files rather than commits at
the top level. He/she should instruct operations about what should be updated and rebuilt, i.e. update just the
files necessary and only build the components affected by the updates.

 7. APS/ASD Configuration Management Procedures

58 IOC Software Configuration Management

 Updates in <ioctop> areas

Because application developers can accidentally commit changes that would break the operational system
care should be taken when performing cvs updates on an <ioctop> in the operations area. A good idea is to
do the following before any updates:

Wherever you plan to issue a cvs update first issue the command

cvs −n update

which will list the files that are liable to be changed. Then on any files you want to update issue the command

cvs diff −r Bx <filename>

where Bx is the current branch tag, to see the modifications that have been committed. Only if you are
satisfied with these changes should you perform the actual update.

 $CVSROOT/CVSROOT/cvsignore

This file should contain

O.*

which makes cvs ignore all O.* files .

 7. APS/ASD Configuration Management Procedures

IOC Software Configuration Management 59

 7. APS/ASD Configuration Management Procedures

60 IOC Software Configuration Management

 8. EPICS CVS Repository

8.1. Overview

All development of EPICS core software makes use of a central CVS repository at APS. Remote access to
this is possible but is controlled by the requirements of the APS firewall and DoE policies on computer
security. The remainder of this chapter assumes that the user has some experience in using CVS.

 Licensing and Distribution

Until the question of future EPICS licensing is fully resolved the source code for the core software can only
be made available to collaboration members, thus anonymous CVS read access to the whole repository
cannot be provided. Anonymous access to the epics/modules directory containing unbundled hardware
support packages is possible though, and experiments are being made in providing this facility from the APS
web−site. A link to this facility will appear on the APS EPICS home page if the experiments prove successful.

 CVSROOT

The EPICS CVS repository is at /net/phoebus/epicsmgr/cvsroot on any of the machines in the
APS controls group network. Users must be a member of the Unix group epicsmgr to be able to access the
repository using CVS.

8.2. Base

EPICS base is found at epics/base relative to the CVSROOT. Note that base is also defined as the CVS
module name for this subdirectory.

Files are tagged with each release, and distributed versions also have a branch created to allow bug fixes to be
applied and retrieved without also getting changes that are intended for the next major release. For example
the branch with tag epics_R3_13_1_branch is used for all bug fixes to version 3.13.1 but not include
modifications being developed for version 3.14 (which should appear only on the main branch until released).

Marty Kraimer <mrk@aps.anl.gov> should usually be consulted before checking in changes to base. Janet B.
Anderson <jba@aps.anl.gov> is in charge of the release process.

8.3. Modules

Hardware support code (device and driver support and some specialized record types) is being unbundled
from base, and the intention is for 3.14 to not have any hardware−specific code in it. The existing support
routines will be packaged up as <supporttop> applications and these will be placed into the
epics/modules area of the repository. Responsibility for future maintenance of these modules is being
divested from APS where other volunteers can be found, and after unbundling any remaining modules will be
left fallow. Sites interested in taking on a such a module are asked to contact Andrew Johnson

IOC Software Configuration Management 61

mailto:mrk@aps.anl.gov
mailto:jba@aps.anl.gov

<anj@aps.anl.gov> about this. The list of modules and Module Owners will be merged into Steve Lewis' List
of EPICS Supported Hardware pages in due course.

Module Classifications

The repository structure within epics/modules will reflect the classification of the module concerned.
The basic philosophy behind the repository structure is that the location of a particular module is determined
by its functionality, not by the connection method needed to control it. Cross−references will obviously be
needed from the particular bus involved, but these should be given in the documentation and web−site for the
bus, not the repository. Some devices may have more than one method of connection, and in these cases the
name of the <supporttop> directory should include the bus used (for example
epics/modules/bus/gpib/mpfGpib is the module that supports GPIB communications over MPF).
The module categories are as follows:

Bus interface (epics/modules/bus)
This classification is for bus interface and device support software such as GPIB, CAMAC,
Bitbus, IPAC and MPF etc. These modules provide the bus interface and generic device
support, but not software specific to a particular remote I/O modules which connects to that
bus; that software lives in one of the other areas below (unless it's an adapter to a different
bus type). It is up to the module owner to decide whether to have a monolithic <supporttop>
which might have to contain several drivers for different interfaces to the same bus type, or
to split these into a common bus−related module and separate support applications for each
interface driver.

PLC interface (epics/modules/plc)
Interfaces that communicate with a PLC using some software protocol are collected here.
The precise distinction between plc and bus interface depends whether the device being
communicated with is usually end−user programmable or not, thus the Allen−Bradley
scanner support appears in the Bus interfaces, but if the the Allen−Bradley PLC−5 interface
using the DF−1 serial protocol is ever managed centrally it should be installed here.

Serial interfacing (epics/modules/serial)
Serial is really another example of a bus type, but being pragmatic about it there are so many
different interfaces to serial devices it was felt necessary to give them a top−level structure.
Distinction between a PLC interface and a Serial one should use the 'is it programmable?' test.

Soft support (epics/modules/soft)
Support applications which don't have associated hardware. The unbundled SNL sequencer
will be distributed as a <supporttop> application here, as will the pal record, and the
vxWorks statistics and symbol device supports.

Analog I/O (epics/modules/analog)
This classification is for analog and waveform I/O device and driver support. Initially there
will be a <supporttop> for each manufacturer, although the module owner may further
subdivide this into more <supporttop> applications if desired. These <supporttop>s may have
dependencies on one of the Bus interfaces above.

Digital I/O (epics/modules/digital)
Digital I/O device support appears here, including long integers. The same substructure
applies as described for Analog I/O.

Motor control (epics/modules/motor)
The stepperMotor record is here, also intended for DC motor controllers etc. A single
<supporttop> is provided for each manufacturer containing the device and driver support

 8. EPICS CVS Repository

62 IOC Software Configuration Management

mailto:anj@aps.anl.gov
http://csg.lbl.gov/Supported.HW.html
http://csg.lbl.gov/Supported.HW.html

interface software, to encourage the development of a single driver interface for use by both
the stepperMotor and motor record types.

Timing I/O (epics/modules/timing)
Pulse generators, counters, timing and event interfaces belong here. The event distribution
system record types are in the common application, and the APS−developed hardware
support for these is in aps. The pulseCounter, pulseDelay and pulseTrain records that are
specific to the Mizar MZ8310 are with the associated device and driver support in the mizar
application.

Instrument I/O (epics/modules/instrument)
Anything that supports a number of related I/O variables or has a complex record type which
doesn't obviously fit into one of the other categories may be placed here. Each instrument
manufacturer should have their own subdirectory, and the support applications for the
individual instruments will exist below that.

Site−specific (epics/modules/site)
Sites that share custom hardware with one or more other labs can place support modules here
if they don't fit any of the other categories particularly well. Any substructure should be
decided by the lab concerned.

Additional categories or sub−divisions can be added if they prove necessary. For example some of the client
extension programs could be converted to using the makeBaseApp structure, and it would be appropriate to
give them in a suitable classification in this area rather than the existing monolithic
epics/extensions area.

The above path names may seem to result in a very broad tree, putting only a very small number of
devices/drivers in each <supporttop> application. This is deliberate, as at most sites an individual <ioctop>
application will usually only need a reasonably small number of device types. Experience at APS has shown
that bundling too much support code into a single application produces a software maintenance nightmare
further down the line, and this is one reason why we are unbundling the hardware support. A broad tree
should not add significantly to the tasks an application developer needs to perform, and EPICS site managers
can help by including the necessary additional lines (commented out as desired) in the
config/RELEASE file of the local makeBaseApp templates.

When installing packages for use by applications, we recommend that the same relative path name be used as
given above, but the particular version of the module will need to be given a name which reflects the
particular module version. At APS the release number (such as 2−1) is used as the last component of the path
name to the module, so that for example the Allen Bradley Scanner <supporttop> might be installed at
/usr/local/iocapps/R3.14.0/bus/allenBradley/2−1. This makes it possible to install a new
version of a <supporttop> application at any time but still ensure that only the application engineer in charge
of a particular IOC can decide when to switch to using the new version. The APS Procedures section of this
document describes this approach, although it does not use the classification structure described here as it was
developed for earlier releases of EPICS.

The preferred method of distributing modules is to provide a tar file for each release, accessed through the
module's web−site or ftp server. Module owners are also encouraged to read the Linux Software Release
Practice HOWTO document which gives good advice on release procedures.

Any hardware record, device or driver support which was provided with release 3.13.1 of EPICS base but
which is missing from the above list will be deleted. Should you need any such software you should check on

 8. EPICS CVS Repository

IOC Software Configuration Management 63

http://metalab.unc.edu/pub/Linux/docs/HOWTO/Software-Release-Practice-HOWTO
http://metalab.unc.edu/pub/Linux/docs/HOWTO/Software-Release-Practice-HOWTO

Steve Lewis' Supported Hardware web page and approach the current maintainer directly, or ask on
tech−talk. As a last resort you can always obtain the source code from release 3.13.1 and create your own
support application for it.

8.4. Module Owner Responsibilities

A significant part of the work of a Module Owner (MO) is to maintain the code, fixing reported bugs or
merging bug fixes from other users. However equally important or even more vital are the tasks associated
with creating and maintaining documentation so the module can be used, and with packaging up releases and
making the software easily available to other EPICS sites. It may be appropriate for some modules to divide
the work between several people, some of whom might not be software developers (web−site maintenance
for example).

 Documentation

One of the first jobs should be to develop a web−site for the module. Eventually this should contain:

• A list of the hardware manufacturers and models supported by the module. Links to their web−sites
would be useful.

• Instructions for obtaining and/or links to versions of the source code (see Distribution below).
• Information on the version(s) of base supported and any other modules which will be needed.
• Documentation on how to install this module at a new site.
• Documentation on how to use this module in an <ioctop> application.
• Release notes describing any changes between different release versions.
• A list of sites known to be using this module (this provides some indication of software quality).

Ideally copies of the documentation should be distributed with the software, but at the very least there should
be a README file present which gives the URL for the module's web−site and the name of the Module
Owner.

A template module web−page has been developed (using Netscape Composer, although any HTML editor
can be used) which MOs may start from if they so wish. This will obviously need to be modified to suit
particular circumstances by changing or removing parts as necessary (search for underscore characters in the
HTML file to find all the parts that will need replacing). If you develop your own site, please try to ensure
that all the above information can be accessed by the users somehow, although it does not have to be all on
one page.

If you do not have access to a web−server or would prefer to maintain the web−site at a central location, APS
will make an area of its web−site available to nominated MOs for module use. Requests for web−space and
an account on the APS server should be made to Bill McDowell.

Distribution

The recommended method is to provide a tar file for each documented release of the <supporttop>, accessible
via the module's web−site or an ftp server. This is pretty much an industry−standard approach for obtaining
software, and as long as there are no copyright problems in making the software available on a public server

 8. EPICS CVS Repository

64 IOC Software Configuration Management

http://csg.lbl.gov/EPICS/Supported.HW.html
mailto:wpm@aps.anl.gov

it should be the preferred method.

Unless there are particular reasons not to do so, try and keep older versions of the software available. This
particularly applies where a particular version of EPICS base is required. MOs may be called upon to
incorporate bug fixes into old module versions and generate new releases of these after an upgrade of EPICS
base has required a significant change to the software. The release version number should indicate the
relevant parentage.

We are looking at the possibility of providing a mirrored copy of the CVS repository outside the APS
firewall, providing anonymous read−only access. This should make it easier for sites to obtain and install
upgrades without compromising security for the code−base. Until the legal copyright issue has been resolved
this would only serve the $CVSROOT/epics/modules area.

 Development

As changes occur to EPICS base, modifications may be needed to the <supporttop> applications to remain
compatible with the new versions. The changes needed and any tools to help with this will be published by
the base developers as soon as these have been confirmed, and any modifications thought to require
significant effort should have been discussed on tech−talk or other forum beforehand. The MO will be
responsible for ensuring that the required changes are applied and tested, and a new release created.

 Delegation

There may be several developers in the EPICS consortium with an interest in a particular module, and the
MO is at liberty to distribute the workload associated with maintaining the module as she/he sees fit. Overall
responsibility for the software and final authority for what should or should not be included in it will remain
with the MO however.

 8. EPICS CVS Repository

IOC Software Configuration Management 65

 8. EPICS CVS Repository

66 IOC Software Configuration Management

 EPICS _template_ Module

Module Owner:
_owner_name_

This page is the home of the EPICS _template_ module, which provides _record/device/driver_ support for
hardware. This site gives access to the software source code, information on other modules which are
needed to install and run it, and documentation on the how to include and use it in your EPICS applications.
Please email any comments and bug reports to _owner_name_ who is responsible for coordinating
development and releases. _peer_name1_ and _peer_name2_ are also familiar with this module and may be
willing to help with some problems.

 Hardware Supported

The module can drive the following types of hardware:

• _manufacturer1__model1_ _description1_
• _manufacturer2_ _model2_ _description2_

 Where to Find it

You can download the software by anonymous ftp from the _lab_ ftp site at ftp://_ftp_site_/_directory_, or
directly from the links in the table below:

Module Version EPICS Release Filename

1−1 R3.13.1 _module1−0.tar.gz_

2−0 R3.14.0 _module2−1.tar.gz_

 Required Modules

Applications using this software will also need these other modules to be installed:

template Version Requires module Release needed

1−1 _required_ _versions_

2−0 _required1_ _versions_

required2 _versions_

IOC Software Configuration Management 67

mailto:_email_address_
mailto:_email_address_
mailto:_email_address_
mailto:_email_address_
http://_manufacturers_site_
http://_manufacturers_site_/_model_pages_
ftp://_ftp_site_/_directory_
ftp://_ftp_site_/_directory_/_module1-0.tar.gz_
ftp://_ftp_site_/_directory_/_module2-1.tar.gz_
http://_site_/_module_path
http://_site_/_module_path_
http://_site_/_module_path_

 Site Installation and Building

After obtaining a copy of the distribution, it must be installed and built for use at your site. These steps only
need to be performed once for the site (unless versions of the module running under different releases of
EPICS and/or the other required modules are needed).

1. Create an installation directory for the module, usually this will end with /support/_class_/_module_.
2. Unpacking the distribution tar file produces a <supporttop> directory named after the release number.
3. Edit the config/RELEASE file and set the paths to your installation of EPICS and to the _required1_

and _required2_ modules.
4. Run gnumake in the top level directory and check for any compilation errors.
5. Please email _module_owner_ so s/he can keep track of which sites are using this software.

 Application Installation

To use the installed and built support software in an <ioctop> application, make the following changes to the
application:

1. Edit the config/RELEASE file and add the line

TEMPLATE=/path/to/module/version

2. See the documentation for the _requires1_ and _requires2_ modules for instructions on how to install
these in the application. An <ioctop> application must use the same version of these modules that the
template module has been built with.

3. Edit the config/CONFIG_APP file and add the lines

ifdef _TEMPLATE_
USR_INCLUDES += −I$(_TEMPLATE_)/include
_TEMPLATE_BIN = $(_TEMPLATE_)/bin/$(T_A)
USER_DBDFLAGS += −I $(_TEMPLATE_)/dbd
endif

4. In the application source directory where the base object files are linked together, edit Makefile.Vx
and add

LIBOJBS += $(_TEMPLATE_)/_templateLib_

5. Ensure the following is included in the construction of the application's .dbd file

include "dev_template_.dbd"

6. Rebuild the application and use the newly installed support as desired.

 EPICS _template_ Module

68 IOC Software Configuration Management

mailto:_email_address_

 Documentation

The following documentation is available:

• Introduction to the _template_ module (HTML) (pdf − 200 Kb) (PostScript − 150 Kb)
• Release notes (HTML)

 In Use

This software was originally developed by/for _developer_ at _lab_ and is used at the following EPICS sites:

• _lab1_
• _lab2_ _division1_
• _lab2_ _division2_

_website_maintainer_

 EPICS _template_ Module

IOC Software Configuration Management 69

_template_intro_.html
_template_intro_.ps
_template_releases_.html
mailto:_email_address_

 EPICS _template_ Module

70 IOC Software Configuration Management

	Table of Contents
	 1. Overview
	 User Prerequisites
	 System Prerequisites
	 Make vs. Gnumake

	 1.1. Overview of Application Structure
	 1.2. Use by Application Developers
	<top>/config
	 Types of Top
	 Templates
	 Tools
	 References

	 2. Getting Started
	 Check Environment
	 Create example Application
	 Inspect Files
	 Build
	 Inspect Files
	 Boot Parameters
	 Boot
	 Test

	 3. Managing a <top>
	3.1. Definition of <top>
	3.2. Directory Structure
	 Directories
	 Makefiles
	<top>/config/*
	base.dbd <app>Include.dbd
	baseLIBOBJS
	st.cmd
	cdCommands
	Release 3.13.1
	Release 3.13.2

	3.3. Using External <top> Components
	3.4. Switching to a New Release of an External <top> component

	 4. Building Components
	4.1. Locating Make Rules
	4.2. Make
	 Where make is used
	 Make targets

	4.3. Description of Makefiles
	 <top>/Makefile
	 <top>/xxxApp/Makefile
	 <top>/xxxApp/src/Makefile.Host
	 <top>/xxxApp/src/Makefile.Vx
	 <top>/xxxApp/xxxDb/Makefile.Host
	 <top>/iocBoot/Makefile
	<top>/iocBoot/iocxxx/Makefile

	 Description

