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= Problem statement

= |Impact of corrector dynamics on the response matrix equation
=  Some different approaches to unification

= |sthere an algebraic solution?

= Wrap-up
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The dynamic global orbit feedback algorithm
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Measured step responses of APS corrector magnet fields

Step responses of the power supplies and magnets are the same in all cases

Overall responses of each corrector family are dominated by eddy-current
effects in the vacuum chambers. Effects are different for each family.
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Block diagram of combined DC and AC systems
(no overlap compensation)

Both systems attempt to correct the same orbit motion within the frequency
band where they are both effective.
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Rationale for unifying fast and slow correctors in
the APS orbit feedback system

= Time domain goal

— Wide correction bandwidth

= Spatial domain goal

— Highest precision of orbit correction at the x-ray source points

But if all correctors are treated as equivalent:
— Cannot achieve spatial precision using just the 38 fast correctors

— Cannot achieve wide bandwidth if we include the slow correctors

= Compromise goal
— good spatial correction at low frequencies
— High frequency correction but with reduced spatial accuracy
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ange in bpm readings for a
unit change in a given corrector
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Implementing the orbit correction algorithm

Computation of corrector errors is conveniently separated into a series of M
vector dot-products, one for each of the M correctors

inverse response matrix corrector 'errors’
_[ row 1 j ‘ [corrector 1 :I
I: row 2 :I % [ corrector 2 :I
o

| o | 5| = |

| = |
[ row M'1—] o E:orrector M-1:|
_|: row M —]_ ‘ I:corrector M:|

MxN N x 1 M x 1

Corrector errors becomes the input to one of M feedback regulators.

Provided the corrector and bpm dynamics are identical, the feedback loops are
independent, and can be implemented as M single-input / single-output systems.
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Made-up linear algebra problem in 2-d space

- Make N measurements of position (p) and angle (p’)
- Move RMS of measurement as close as possible to the origin using M actuators
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Two orthogonal actuators
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Two orthogonal actuators
Independent solutions for p and p’
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Two non-orthogonal actuators

- Actuator Al vector is parallel to p
- Actuator A2 vector has components in p and p’
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Two non-orthogonal actuators
- Actuator Al vector is parallel to p

- Actuator A2 vector has components in p and p’

Coupled solutions for p and p’
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Three non-orthogonal actuators
- Actuator Al vector is parallel to p
- Actuators A2 and three vectors have (different) components in p and p’
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Three non-orthogonal actuators
- Actuator Al vector is parallel to p
- Actuators A2 and three vectors have (different) components in p and p’
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P Many solutions
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All very well for static orbit correction, but if the vectors
aren’t applied simultaneously, the solution is incomplete
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Corrector
drive

Orbit feedback model revisited
(orbit correction to orbit error)
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Orbit correction in terms of orbit error...
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Orbit correction to orbit error

« Expand to show diagonal nature of H,(z)

[ x1(2) | (a(z) 0 0 [ x1(2) |
x2(z) :Z_l “‘R- 0 hc2(Z) 0 'Rinv° x2(z) +W(Z)
| x3(2) | 0 0 7.3(2)] | x3(2) |

Simplest case, no dynamics, and unity gain per corrector channel...

_xl(z)_ 1 O O_ _XI(Z)_

X (2)|=Z7RJ0 1 0-R,, | x(2) |+ W(2)
| X3(2) | 0 0 1] | x3(2)_

SO R-H(z) Ry, =1
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Orbit correction to orbit error with different regulator gains

« Different regulator gains...

(xi(2)] 1 0 0 Cxi(2)]
X (2)|=Z7VRJ0 05 0[-R,, | x(2) |[+W(2)
| X3(2) | 0 0 1] | X3(2) |

So, in this case R'H(Z)'Rinv =+ [

« This means that the correction algorithm is rendered partially ineffective when
each corrector channel has different dynamics.

« Seen another way, the orbit error is decomposed into M error vectors (one for
each of M correctors). Only if all error vectors are treated identically does the
correction algorithm hold.
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Unification of AC and DC systems

A few options

1. Letitrip! Have both systems running and independently correcting down to DC
— UNSTABLE !!

2. Combine the two systems in one response matrix with all correctors
— At higher frequencies, the slow correctors run out of bandwidth

3. Use compensation network to make slow correctors look like fast correctors

4. Use slow system for DC and fast system for AC (put a high-pass filter at the front of
fast system)

5. Algebraic solutions? Fast system corrects from DC, compute response matrix as if
the slow system doesn’t exist, then use slow system to fix what’s left

Advanced Photon Source, Argonne National Laboratory
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Modeled vertical beam motion for various configurations

Power Spectrum
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Measured step responses of APS corrector magnet fields

Step responses of the power supplies and magnets are the same in all cases

Overall responses of each corrector family are dominated by eddy-current
effects in the vacuum chambers. Effects are different for each family.
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Effect of vacuum chamber eddy currents

Magnet fields have to penetrate 72 of aluminum in the APS vacuum chamber

\L Extruded Aluminum-Alloy Vacuum Chamber
0.5
Bgam Pump

Chamber Antechamber

Photon Beam
Channel

Water Cooling

This has no impact on DC fields, and therefore on slow orbit correction, but
significantly impacts dynamic orbit correction bandwidth for those magnets

surrounding the aluminum chamber.

e The eddy-currents introduce a time-delay (not a phase delay)
e Driving the corrector harder does not make the field get through any quicker
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Results of least-squares corrector compensation
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Limitation: cannot fix the long eddy-current delay of the slow

correctors without violating causality.
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RTFB fixes AC component, slow orbit correction fixes DC orbit
(What we do now)
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= |t works!

= Major limitation: poor attenuation of disturbances in the cross-over
region
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Block diagram of combined DC and AC systems P
(with overlap compensation)

Overlap compensation prevents fighting by introducing a correction factor into
one system derived from the action of the other system. Since the two systems
use different correctors & bpms and have different dynamics, mappings are
required between the two.

A scheme similar to this is in use at the APS.
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This is what’s used at APS now
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Slow correction using slow Al & A2 actuators
Fast correction using A3 alone...
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Slow correction using slow Al & A2 actuators

Fast correction using A3 alone...
Fast: get as close as possible in RMS sense using just A3
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Migrate to DC correction algorithm using Al and A2
Fast correction using A3 ramps down while ramping up slow correction
using A1l and A2
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Migrate to DC correction algorithm using Al and A2
Fast correction with A3 ramps down while A1 and A2 solution ramps up
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\_________________________________________
Finally, only slow correction using A1 and A2 is active
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What about solving the unification problem in the
spatial domain? (Algebraic solution)

=  Would be ideal!

Requires orthogonal inverse response matrices for slow and fast systems
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Slow correction using slow Al & A2 actuators
Fast correction using A3 alone...
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What if A1 & A2 has slow response, but A3 is fast?
What about using Al & A2 to complete the path without turning off A3?
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What if A1 & A2 has slow response, but A3 is fast?
What about using Al & A2 to complete the path without turning off A3?
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What if A1 & A2 has slow response, but A3 is fast?

What about using Al & A2 to complete the path without turning off A3?
PI

A
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How would this be ‘better’?

* Eliminates the overlap in frequency space

* Fast system always applies it’s optimal corrector strength

* Have the benefit of all three correctors at DC

e At intermediate frequencies, gets incrementally closer to the origin

Advanced Photon Source, Argonne National Laboratory
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Ok, but can we make it work?
(let’s develop the math a little and see where it takes us)

A ho An
7'21 ]"21 r2n
| le rml rmn
Slow corr. part

iy K Ha ACl

FZI F21 FZn O
B A | B U

Equivalently AP =AP Tast "‘APSZOW =
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How to solve...?
Unified inverse RM equation AC = (R H)pinv AP

We want the fast corrector Inv RM to be as if the slow correctors weren’t there

Acfast = (Rfast)pmv AP

ie, we're pre-determining a subset of rows of the combined Inv. RM before inverting

Ac, Ap, | iy iy .. IR,

Ac, Ap, vy, ity ... In,

Ac, Ap, v, ir, .. ir
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How to solve...?

Plug back into the response matrix equation for the fast correctors alone
piny
Ap fast " fast . (Rfast) . AP

Plug this back into the combined response matrix equation

R

slow

AC,, =AP =R, - (R

piny
) AP

Now invert?

slow

AC — (RSZOW)Pinv |:] _ Rﬁm . (Rfasf )pz'nvi|. AP

Form is similar to the overlap compensation scheme

It looks like we should be able to create a single modified IRM for the slow correctors,
practical approach is probably a weighted least-squares inversion of combined RM
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Now Glenn is disappointed because | don’t have a final answer or
detailed simulation results to show (yet)

= Has similarities with the overlap compensation approach but
is independent of dynamics

= [t looks like we should be able to create a single static IRM
that can be separately applied in the slow and fast systems

= A practical approach to generating the Inv. RM would likely be
a weighted least-squares inversion of the combined RM

Advanced Photon Source, Argonne National Laboratory
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What the best solution for unifying fast and slow
feedback systems...?

= Frequency separation with overlap compensation has been
good enough so far, but we need to do better

= Compensation network of slow corrector responses doesn’t
fix the eddy-current-induced delays, but would certainly help

" Probably the optimum solution comprises sub-optimal
solutions for slow and fast systems individually (we need a
good model of the orbit disturbance characteristics)

=" An algebraic solution that orthogonalises fast & slow systems
seems feasible — robustness and effectiveness to be studied

Advanced Photon Source, Argonne National Laboratory
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