Probing Magnetism and
Ferroelectricity with Synchrotron
X-ray Microdiffraction

Paul G. Evans

Department of Materials Science and Engineering
University of Wisconsin, Madison

evans@engr.wisc.edu

43 ‘:j

2
ebh
G W

APS Workshop on Time-Domain Science
August, 2004

College of Engineering

University of Wisconsin-Madison




Outline

* Overview: Physical Phenomena,
Motivation, and Tools

» Polarization Switching and Fatigue 1n
Ferroelectric Thin Films

« What’s the state of the art now?
« What would we like to be able to do?
* What can we do in the near future?




Ferroelectric Materials

® * ,
« Example: tetragonal
phase of barium
titanate (BaT10;) O g o | =101
* 6 possible polarizations
* Organized naturally or
artificially into jBa O s

domains.
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What can be |earned about polarization switching in ferroelectric
materials?
Problems with existing techniques: time resolution, electrodes,
guantification.



Epitaxial PZT Thin Film Capacitors
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Open Questions 1n the Physics of
Ferroelectric Devices

* How does polarization switching occur?
— What 1s the speed of a moving domain wall?

— How quickly can a ferroelectric thin film
capacitor switch polarization?

— Are there any intermediate structural states that
are important to switching?

How can the piezoelectric response of
actuator materials be optimized?



“Standard Model” of Switching

E(t)|=0 Initial state, stable in zero field

Polarization reversal in applied field
begins with nucleation.

|E(t)|>0

Nucleus propagates to opposite
electrode.

Switching process is complete.

t Lateral propagation of domain
walls.



X-ray Microdifiraction as a Tool for
Physics and Materials Science

e 6to30keV

e 10'Yph/s/0.01%BW

e  Minimum spot (APS)- 0.1 x
0.1 pm?

e <1 ns time resolution
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Contrast from: Diffraction, Composition, Ferroelectric Polarization,
Magnetization.

Problems with existing techniques: time resolution, electrodes,
guantification.



Time Resolved Microdiftraction

Electrical
connection
to sample

”
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3
Avalanche
photodiode detector

Use avalanche photodiode with multichannel scaler to time-resolve the
diffraction signal during voltage pulses.



Reminder: X-ray Scattering From
Atoms

X-rays are scattered by atom into (approximately) all directions.

Scattered beam amplitude and phase
depend on the atom.
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Symmetry of X-ray Diffraction
+~ » Patterns

a

Zn

S
Zn

ZnS (111): Coster, Knol, and
Prins (1930).

Bragg condition: Phase relationship
between unit cells.

Intensity of peaks set by phase
relationship between beams
scattered within each unit cell.

Phase difference between B and A:
Oyt0,-0,

Phase difference between D and C:
Og1+90,-0,

Phase difference depends
on polarity of crystal.



Anomalous scattering effects in
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Outline

» Polarization Switching and Fatigue 1n
Ferroelectric Thin Films

e Where are we now?
e What can we do?



Imaging Ferroelectric Polarization
Switching with X-ray Microdiffraction

area of Imaaqes

focused diffracted
incident beam to
X-ray 200 um dia. detector
beam slectrode
-
[001]

X-ray photon energy
energy 10 keV.



Imaging PZT Polarization Switching

top
electrode

o R W aea of image

intensity

Maps of the intensity of PZT (002) reflection vs. the position
of the beam on the sample.
Intensity following —10 V pulse 1s 25% higher than



Switching with E = E_
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-10V

1. Apply negative voltage
pulse to produce uniform
polarization.

2.0V 2.8V
2. Apply a positive pulse near E..

500 ps triangle pulses
Device switches in well defined areas.



Relationship of Polarization to
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Time Resolved Diffraction During
Switching
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Switching of 200 um diameter device limited by RC time constant.



Relating electrical and mechanical
observations of polarization switching
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hysteresis|oop
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Direct Measurements of Piezoelectric
Distortion
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Mechanical boundary conditions

are 1mportant!

* Piezoelectric displacement can be strongly
constrained by either substrate or PZT film
around the edge of a capacitor.
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» Polarization Switching and Fatigue 1n
Ferroelectric Thin Films

e Where are we now?
e What can we do?



Time Dependent Phenomena 1n a
Switching Capacitor
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Proposed Timing Diagram

x-ray pulse arrival
at sample
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Conclusions: Ferroelectrics

Goals: Quantitative Imaging with Submicron Resolution

1. X-ray microdiffraction provides a new avenue to studying
polarization switching in ferroelectric devices.

2. Quantitative agreement of x-ray observations with electrical
measurements of switching.

3. Potential to take advantage of the flexibility of x-ray scattering
techniques: resonant scattering, time resolved diffraction...

Future;

—

-4+—— thin 5rRuQO3 top electrode

dynamically strained layer

epitaxial Pb(Zr,Ti)O3 piezoelectric

SrRuO3 bottom electrode

| S Pillar formed using FIB.




People

Ferroelectric thin films
— X-ray experiments: Dal-Hyun Do (UW), Eric
Dufrsense (Adv. Photon Source)

— PZT thin films: Dong Min Kim and Chang-
Beom Eom (UW Materials Science)



