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Mono-valent salt concentration dependence of force curves

0.3M

0.12M

0.056M

0.02M

5.6mM
0.92mM
0.11mM

Force curve depending on [NaNO3] maximum brush height vs. [NaNO3] 

Osmotic brush regime

Salted brush regime

Elastic force Osmotic pressure L0 = brush height

L = equilibrium brush height, N = number of monomer units of Kuhn length a, σ = adsorption density, kT = thermal 
energy, α = ratio of the total number of free mobile counter ions to the total number of monomer segments

Pincus, 1991

PSS brush w small hydrophobic block

Surface Forces Apparatus:
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Compression and separation force profiles of PtBS20-NaPSS420 measured at I0 =
0.003M. Solid data points represent the compression of the surfaces. Open data
points represent separation. Concentrations of Ru(NH3)6

3+ are incrementally
increased as indicated in the legend.

Brushes in varying proportions of multi-valent salt Ru(NH3)6
3+ 

at constant overall ionic strength
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“Interfacial Tension of Polyelectrolyte Complex Coacervate Phases”, J. Qin, D. Priftis, R. Farina, S. L. Perry, L. Leon, J.
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“The Effect of Salt on the Complex Coacervation of Vinyl Polyelectrolytes”, S. Perry, Y. Li, D. Priftis, L. Leon and M.
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“Complex Coacervation of Poly(ethylene-imine)/Polypeptide Aqueous Solutions: Thermodynamic and Rheological
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Polyelectrolyte Complex Formation



Phase Diagram
Driving forces
 Electrostatic interactions between the 

polyelectrolyte chains
 Release of counter ions associated with 

the polyelectrolyte chains

Key Goals
 Predicting PEC properties and stimuli response
 Design of PEC-based self-assembling materials

N = 200
N = 400





Triblock copolymer synthesis:

Hunt, JN; Feldman, KE; Lynd, 
NA; Deek, J; Campos, LM; 
Spruell, JM; Hernandez, BM; 
Kramer, EJ; Hawker, CJ; Adv. 
Mat. 2011

Sulfonate Guanidinium

n=31, k=454

PAGE-PEO-
PAGE



Gels with the BCC structure had the largest G’

All SAXS data were obtained at the 8-ID-E line at the Advanced Photon Source at Argonne National Laboratory

7.35 keV x-rays, 2.18 m detector distance
D.V. Krogstad, N. A. Lynd, S.-H. Choi, 
J. M. Spruell, C. Hawker, E. J. Kramer 
and M. V. Tirrell, Macromolecules, 46, 
1512-1518 (2013).

3.5K end blocks. 20K middle blocks
Equimolar mixtures of sulfonate and
guandinium polymers



Cryo-TEM shows that the domains are fairly 
monodisperse and well ordered
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SAXS data show that, as salt is added, the
ordered structure of the gels is lost

D.V. Krogstad, N. A. Lynd, S.-H. 
Choi, J. M. Spruell, C. Hawker, E. 
J. Kramer and M. V. Tirrell, 
Macromolecules, 46, 1512-
1518 (2013).



q at 1st peak (A-1) d spacing (A) Structure
Triblock 0.0313 200.3 BCC
Diblock 0.0331 189.6 BCC

D.V. Krogstad, N. A. Lynd, S.-H. 
Choi, J. M. Spruell, C. Hawker, E. 
J. Kramer and M. V. Tirrell, 
Macromolecules, 46, 1512-
1518 (2013).



The translational correlation lengths 
increase throughout the experiment

20 wt%



Small angle X-ray scattering was 
utilized to investigate the structural 
evolution with time for both the (a) 
tri-block and the (b) di-block 
copolymer materials. (a) It can be 
seen that for the tri-block copolymers, 
the BCC structural peaks were not 
initially observed, however, starting at 
about 20-30 minutes, the second and 
third order BCC peaks started to form. 
With time, these peaks increased and 
the width of the first order peak 
decreased. The formation of the 
second- and third-order peaks are 
more clearly visible in the inset 
showing the 15, 20, 30, 45 and 60 
minute patterns. (b) For the di-block 
copolymers, the BCC structure formed 
quicker and was observed even at 5 
minutes (not shown). Both samples 
had a polymer concentration of 20 
wt% and a salt concentration of 0 M 
NaCl. The arrows indicate the direction 
of changes in the SAXS patterns with 
time.



Triblock Phase Diagram Diblock Phase Diagram 

The structure variation can be summarized 
schematically in a phase diagram

“Structural Evolution of Polyelectrolyte 
Complex Core Micelles and Ordered-
Phase Bulk Materials”, D. V. Krogstad, 
N.A. Lynd, D. Miyajima, J.  Gopez, C. J. 
Hawker, E. J.  Kramer, M. Tirrell, 
Macromolecules, 47, 8026-8032 (2014). 



SANS shows changes in the lattice spacing 
with polymer concentration

Decrease
d lattice 
spacing

• Core-shell micelles
• Polydisperse core size
• Interfacial thickness between 

the core and the shell
• Variable hard sphere or BCC 

structure factor
All SANS data were 
obtained from the 
BioSANS-3 line at Oak 
Ridge National 
Laboratory



What did we learn from fitting the 
SANS data?
• Constant 

domain radius
• Decreased 

domain 
spacing

• Decreased 
water content 
in the 
coacervate
domains

“Small Angle Neutron Scattering Study of 
Complex Coacervate Micelles and Hydrogels 
Formed from Ionic Diblock and Triblock
Copolymers”, D. V. Krogstad, S.-H. Choi, 
N. A. Lynd, D. J. Audus, S. L. Perry, J. 
D. Gopez, C. J. Hawker, E. J. Kramer, 
and M. Tirrell,  Journal of  Physical 
Chemistry B, 118, 13011–13018 (2014). 



Sztucki, et al., Scattering from tetradecyltrimethylammonium bromide micelles near the bromine K edge 



Sztucki, et al., 
Scattering from 
tetradecyltrimethyl
ammonium bromide 
micelles near the 
bromine K edge 









Ions at Soft Matter Interfaces

Charged soft matter is
fertile territory for high
energy x-ray science
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