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Outline

Evolution of CMOS technology

 micro → nano

 when scaling breaks down

Present challenges

 dopant distribution

 contact resistance

 electromigration

 strain engineering

 mobility
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Motivation

Nanomaterials:
 new properties enabled by increasing

surface to volume ratio

 strength

 electronic behavior

 interfaces are everywhere

L. Gignac et al., FIB User’s
Group Meeting, NIST (2010)

Si

H. Kawasaki et al.,
IEEE IEDM 12.1 (2009)

 semiconductor device scaling

 increased density

 lithographic scaling is no longer sufficient
in improving device performance

 new materials and geometries must be incorporated

100 nm
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End of Classical CMOS scaling

Deviation from “ideal” scaling
 thinner insulation → increased gate leakage
 lower voltage → less performance

Consequence of these deviations?
 dramatic rise in power density

W. Haensch et al., IBM J. Res. Dev. 50, 339 (2006)
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Future needs of nanoelectronics characterization

stressor
materials
(Si3N4,
SiGe,
SiC)

silicide

(NiPt)

gate dielectric

(SiO2, high-K)

dopants

(As, P, B)

metallization
(Cu,W,Al)

Many material and structural issues exist to enhance device performance:

- strained Si channels lead to enhanced carrier mobility in devices

- composition, phase transitions, and microstructure of device components

- mechanical behavior and interfacial scattering within devices

channels
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Contact metallization: Self-Aligned silicides

FB : Schottky barrier height
Nd : Dopant density

RCH

RSPRSD

RCO

silicide

REXT

RCH = channel resistance
RSD = sheet resistance in S/D
RSP = spreading resistance
REXT = Sheet resistance in extensions
RCO = silicide/silicon contact

resistance

Lower Total Source-Drain Higher Drive Current
Resistance Faster Devices

RCO ~ exp [ ( FB) / (Nd)
1/2 ]

RS

H. Kawasaki et al., IEEE IEDM 12.1 (2009)
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Effects of dopant density on contact resistance

K. Ohuchi et al., IEEE IEDM, 1029 (2007)

 interfacial density of dopants critical to reducing contact resistance

Z. Zhang et al., IEEE EDL, 31, 731 (2010)
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Investigating dopants in contact materials (ex-situ)

P. Ronshiem et al., MRS Bulletin, 34, 739 (2009)

 microstructure impacts dopant locations
 assess Pt bonding states at interfaces / grain boundaries

Ni(Pt)Si Si Ni(Pt)Si Si

C. Lavoie et al., Microelect. Eng’g,
83, 2042 (2006)

P. Adusumilli et al., JAP, 112, 064307 (2012)

Ni(Pt)
Si

Si
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Incorporation of alloying elements into Ni silicide
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Ni(Pt)Si alloying:
 limits metal-rich phases
 retards NiSi2 formation
 delays agglomeration
 changes monosilicide texture

In-situ XRD

 as contact dimensions decrease,
grain size → contact area
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Line Width Effect

Silicide formation temperature vs. feature size

 XRD measurements conducted on arrays of features (4 x 4.8 mm regions)
 need to analyze individual features

Ni (5% Pt) shows a
strong dependence
on feature size

Formation Temperature:

Ni5%Pt

C. Lavoie et al., Denver X-ray Conference (2010)

Maskset
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History of the transistor

 Ge point contact transistor (1947)

 also Si*

J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950)

*J. Bardeen and W.H. Brattain, Phys. Rev. 78, 230 (1948)

 Effects of semiconductor deformation

 bandgap

 effective mass

 primarily dilatation (hydrostatic)
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Device channel scaling
 variation in device behavior

due to dopant distributions

K. Bernstein et al. IBM J. Res. Dev. 50, 0018-8646 (2006)
N. Kadotani et al. J. Appl. Phys. 110, 034502 (2011)

 short channel effects
 thinner active Si (ETSOI)

random dopant fluctuations
 big impact on thinner devices
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3D device architecture: FinFET

Si

H. Kawasaki et al., IEEE IEDM 12.1 (2009)

challenges
 3D strain distribution (SiGe and gate effects)
 uniformity of high-k dielectric / metal gate (HKMG) layers
 thickness, composition, grain size / orientation

 Gate encapsulation → better electrostatic control
 lower threshold voltages → less power
 device behavior dominated by fin interface

va

orientations
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High-k dielectrics

 SiOx gate dielectric scaling
tunneling → breakdown

 Reduce leakage current by
employing high-k materials

M. Khare, IEEE CICC 15-3 (2007)

T. Ando et al., Appl. Phys. Express 2 (2009) 071402

 variation in device behavior
Hf, O content impacts work function

 can chemical state be determined?
spatially-resolved XANES
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Strain in FinFET devices

 greater elastic compliance
wrap-around stressors

G. Eneman et al., IEEE IEDM 6.5.1 (2012)K-M Tan et al., IEEE EDL 28, 905 (2007)

 “uniaxial” fin stress

D. Lizzit et al., IEEE TED 60, 1884 (2013)

 ALL structures must be considered !



IBM Research

C.E. Murray | © 2015 IBM Corporation17

Results: strain mapping across SiGe features

 scanning Bragg diffraction (2-ID-D: 0.25 mm FWHM @ 11.2 keV)

 strain reduction at SiGe feature center for features < 10 mm width

 elastic relaxation extends ~ 20 tSiGe from edge

SiGe

Si

Fully strained SiGe

elastically
relaxed
SiGe
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C.E. Murray et al., J. Appl. Phys. 98, 013504 (2005)
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Strain in SOI channel due to embedded features

 measured e-Si(C) strain is equivalent near SOI channel and ~ 1 mm from channel
 lower intensity due to presence of SOI in channel

 greater SOI strain in channel region than under e-SiC features
 small SOI strain under e-SiC

FWHM ~ 0.25 mm

SOI ezz = -0.176%
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C.E. Murray et al., Appl. Phys. Lett. 94, 063502 (2009)

substrate
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Bragg Projection Ptychography (BPP)

 based on coherent diffractive imaging (CDI)
 selective oversampling of (004) diffraction information
 reconstruction of lattice and incident beam
 resolution less than incident beam size (85 nm FWHM)

Ge Ka fluorescence

S. Hruskewycz et al., NanoLett. 12, 5148 (2012)
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Results: e-SiGe stressors on device channels (26ID)

 extraction of strain and lattice tilt

 probe defect behavior

(dislocations, stacking faults)

20

Strained-SOI channels

M.V. Holt et al., Phys. Rev. Lett. 112, 165502 (2014)
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Electron diffraction strain measurements (PED)

 GPA from multiple reflections

 ~ 3 - 5 nm spatial resolution

21

“Depth-dependent” deformation in strained-Si / SiGe structures

Y.Y. Yang et al., Appl. Phys. Lett. 106, 042104 (2015)
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3D BPP

 Reconstruct 3D strain distributions

in e-SiGe stressors and

SOI channels

22

S.O. Hruszkewycz et al., ArXiv 1506.01262 (2015)
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Nanowires

 full encapsulation of active region (GAA)

 convolution of stress distributions and
carrier density

L. Sekaric et al., Appl. Phys. Lett. 95, 023113 (2009)

S. Bangsaruntip et al., VLSI Symp. 21, (2010)
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Impact of adjacent stressors on device strain

 Shallow trench isolation (STI)  Through silicon vias (TSV)

 effects extend ~ 25 x thickness

SOISTI

Si substrate
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C.E. Murray et al., Appl. Phys. Lett. 90, 171919 (2007) C.E. Murray et al., Appl. Phys. Lett. 102, 251910 (2013)
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C.K. Hu et al., IEEE 42nd IRPS, 222 (2004)

W

W

W M0

Ta/TaN

SiO2

Void Cu
e-

Al

Step

Lo LdPtElectromigration

 Flow of atoms due to electronic “wind force”

 Depletion of interconnect leads to voids

 flux divergence points most susceptible

} h

 Current density increases with scaling

 median lifetime (t50) halves per generation

hΔL
v

ΔL
t cr

d

cr
50 

e-

 Microstructure impacts electromigration
 grain boundaries parallel to current flow
 interfaces (top surface)
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Microstructural effects on metallization lifetime

C.K. Hu et al., MRS Symp. Proc. 1559 (2013)

Follow interfacial dynamics
in-situ along key interfaces:

 between specific grains
 buried interfaces

K. Ganesh et al., Nanotech. 23, 135702 (2012)

 electrical measurements provide
aggregate response over all grains
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Alloying elements: Cu(Al) metallization
 incorporation of Al atoms in Cu seed layer
 significant diffusion of Al (bottom to top interface)
 reduction in Cu diffusion scales with dopant quantity

 increase in resistance due to impurities
segregation to GB’s, interfaces

Microprobe analysis

S. Yokogawa et al., JAP 101, 348 (2007)

K. Maekawa et al., Micro. Eng. 85, 2137 (2008)
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Selective capping

 metallic capping of top surface of metallization

mitigate Cu diffusion

can we assess bonding state of capping atoms?

C.C. Yang et al., IEEE EDL 33, 588 (2012)
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XTEM characterization
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Summary & Conclusions

End of traditional device scaling (lithographic) provides new opportunities

 Silicide-based contact metallization must be more robust

 placement of impurities with respect to NiSi / Si interface

 Tailoring strain in devices enables more efficient computing

 in-situ determination of three-dimensional strain distributions

 Tunneling mechanisms requires new materials

 precise location of Hf, O, other elements important to determine Vt

Metallization needs to survive higher current densities

 quantification and location of impurities key to mitigate:

electromigration, TDDB
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Opportunities of APS Upgrade

 in-situ, spatially-resolved measurements are critical to understanding
diffusion-based phenomena in nanoelectronic materials

 combination of complementary techniques

 diffraction / coherent imaging

 XANES / EXAFS

 time-resolved fluorescence tomography

 analyze dopant distributions, chemical state
as a function of time, temperature

 CMOS devices / FinFET’s

 metallization, contacts


