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Outline

This presentation will
focus mainly on
thermocouples and RTD’s
but will also touch on:

B Common Temperature
Measurement Devices

® Device Pros and Cons
® Theory of Operation

B Types and Installation
® Troubleshooting




Common Temperature Measurement Devices

B Thermocouples

M Resistance Temperature Devices (RTD’s)

B Temperature Indicating Tapes, Crayons and Paints
M Infrared Thermometers

M Infrared Imagers




PROs
M Inexpensive
B Wide temperature range

M Various types, sizes and
application methods

B Remote read back

B Read back electronics
can be simple

® Usable in virtually any
environment

Device Pros and Cons - Thermocouples

CONs

B Requires cold junction
compensation

H Slow response time

® Not as accurate as many
other devices without
good CJC and calibration

M Susceptible to noise

B Connection cable/wire is
expensive compared to
copper conductors

B Cable/wire length is
limited




Device Pros and Cons - RTD’s

PROs CONs
® More linear than B More expensive than
thermocouples thermocouples
M Cold junction not an issue B More delicate than
B Special cable/wire not thermocouples unless
needed encased
B Cable/wire length can be B Not as wide of temperature
much longer than TC'’s range as thermocouples
B Better noise immunity B Requires more conductors
B More stable over time than per device
thermocouples B Read back electronics more
B Remote read back complex

B Usable in virtually any
environment




Device Pros and Cons - Temperature Indicating Tapes, Crayons
and Paints

PROs CONs
B Inexpensive B No remote read back
M Variety of ranges and B Most are not reversible
application media (one time use)

B May not be suitable for
some environments




Device Pros and Cons — Infrared Thermometers

PROs
M Portable

® Accurate (when the
emissivity of the material
being measured is known

and reflected radiation is not

an issue.)
® Inexpensive when used to

read many temperatures on

a daily basis (equipment
rounds)

B Remote read back
(sometimes)

CONs
B Expensive
B Complex electronics

B Susceptible to noise when
used with remote read back

B Emissivity of material
required for accurate
measurement

B Reflected radiation an issue

B Some devices not equipped
with an adjustable emissivity
setting

B May not be suitable for
some environments




Device Pros and Cons — Infrared Imagers

PROs

® Very accurate (when the
emissivity of the material
being measured is known)

B Ability to measure many
temperatures in a wide area

B Sometimes range limited
within the image (Delta T)

B Somewhat portable
B Remote read back possible

CONSs
B Very expensive
B Very complex electronics

B Some require a small
Internal cryo-cooler for
element reference

B May not be suitable for
MANY environments




Theory of Operation — Thermocouples

B A thermocouple is a simple temperature measurement
device consisting of a junction of two dissimilar metals

® Contrary to popular belief, the voltage measured (and
converted to a temperature) is not a function of the
junction alone. Rather it is the temperature difference (or
gradient) between the junction (or hot), end and the
reference (or cold), end.

B A thermocouple circuit whose junction and reference are
the same temperature will measure no temperature (0V).

M If this were not true, we could create a self-sustaining
voltage generator using a thermocouple, a resistive load
and an oven, that would require energy only at start-up.
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Thermocouples

B The larger the gradient,
the larger the voltage
value, and the larger the
temperature value.

M Since the temperature of
the reference end affects
the gradient temperature
value, it is essential that
the reference temperature
be known.




Thermocouples

B As an example, think of having

Day 1 Temperature

a temperature process that on Gradient = 75 C
the measurement (or junction), 100C —
end is extremely stable from J Metal 1
day to day, yet the reference ( E|
end (e.g. a meter in an R

i . 4
equipment rack), has no means e C/

of temperature control.
B Even though the junction

remains the same from day to Day 2 Temperature

day, fluctuating rack 00C Gradient = 70 C

temperatures would cause a Rack

different gradient from day to ¢ Metal 1

day, and a different « ﬂ

temperature read back. Metal 2 -
30 C/




Thermocouple Voltage Equations

L 0 -
E=f & ax+f&, 9ax  Equation }
o dx L dx

If the wires are both homogeneows, then

T.I.l Tp,.,. :
F=[E.dT+ ] EedT FEquation 2
The T,
If both wires begin at Tref and end at Tjq. then
Ty
E=J(E.- EudT Equation 3
Tl-l:-.-l

For small temperature differences, we can use the average

calibrations:
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Thermocouples

B The temperature equation
for the simplest of
thermocouple circuits
shown at right is:

47 Temperature Gradient 4}
T = Tjunc — Tref
Where T is the desired Metal 1
measurement, Tjunc IS the
hot junction temperature
and Trer IS the reference Metal 2

temperature, or cold end.

For simplicity’s sake | use
T, Tiunc and Tref here, but In
reality these are voltages
that are later converted to a

temperature.




Cold Junctions

B A fundamental problem when
using thermocouples is the fact
the when connected to a TC Junction Cold Junction #1
measurement device (voltmeter

or TC meter), a third metal is {/ Metal 1 /oltmeter

introduced (the connecting Metal 3 or
terminals), and two more TC Meter
thermocouple junctions are Metal 2 /

created. These adversely

affect the temperature being
measured. The new, (and
unwanted), junctions are

Cold Junction #2

referred to as “cold junctions” The temperature equation for this
and need some type of “cold diagram is:

junction compensation” in order T = Tiunec — Tej — Tei2

to make accurate

measurements.




M In addition to the added variables in the previous
equation, the temperature of the cold junctions
(reference end), is still not known. The following rule
helps things out a bit:

If both TC connections to the meter are of the same
metal or alloy, they cancel each other and have no affect
on the measurement, as long both connections are at the
same temperature (which can be assumed).

M Since the definition of a thermocouple states that it must
be of dissimilar metals, a second thermocouple must be
Introduced to the circuit to achieve this. This was the first
of what is commonly called “cold junction compensation”




® By adding a second
series thermocouple
suspended in an ice bath,
the cold junctions at the
meter are of identical
metals and cancel each

other. In addition, the TC Junction

temperature of the ice

bath is known to be 0 Metal 1 oltmeter
Deg. C and becomes the < e
reference end of the

Metal 2 Metal 1
thermocouple. L |
Ice Bath | |

B The temperature 0Deg.C —In W0 |
equation is now simplified
and once again
becomes:

T= Tjunc — Tret




Inc.

ITS-90 Table for Type K Thermocouple (Ref Junction 0°C) hitp:/fiseine.com
°Cc 0 1 2 3 4 5 6 T 8 9 10
Thermoelectric Voltage in mV

B While the ice bath reference
junction eliminates errors, it
IS clearly impractical for
most, if not all applications.

M It's only practical use in the
modern world is in the
generation of thermocouple = & @ @@ om on cn o om on
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B Most (if not all), of today’s thermocouple read back
options (meters, chart recorders, PLCs, etc.), come
equipped with cold junction compensation, usually a
thermistor and associated circuitry and software. By
taking the cold junction worries out of the picture, the
thermocouple remains one of the simplest , most robust
and widely used temperature measurement devices
around.




Types and Installation

B Thermocouples are
manufactured in a wide
variety of ways and
calibrations, to suit almost
any application. They can
be taped, glued, clamped,
tack welded or held in a
liguid or gas stream with the /
use of compression fittings /.
(probably the most common
method at Argonne).




Sheathed Thermocouples

B A number of sheathing options exists.

B Sealed and Isolated from Sheath:
Good relatively trouble-free
arrangement. The principal reason for
not using this arrangement for all
applications is its sluggish response
time - the typical time constant is 75
seconds (Depending on who is
publishing the data. Omega claims a
2.25 second response time for a .25”
dia. sheathed, ungrounded
thermocouple) Gesh  eked Gomdel  fast.  bead.

fram Sheath to Sheath Response

W If fast response is not an issue (used Thermootple Sheath Options
for trending), and the sheath can be
dealt with application-wise, sheathed,
ungrounded junctions are the way to

go.




MW Sealed and Grounded to
Sheath: Can cause
ground loops and other
noise injection, but
provides a reasonable
time constant (40
seconds), and retains the
sealed enclosure. dooes somedand  sewetant  EBoossd  Expossd

Sheath [zolated Grounded Fast Bead
frorn Sheath ko Sheath Responze

Thermocouple Sheath Qptions




B Exposed Bead: Faster
response time constant
(typically 15 seconds), but
lacks mechanical and
chemical protection, and
electrical isolation from
material being measured.

B The porous insulating
mineral oxides must be
Sealed Sealed and Sealed and Exposed Exposed
sealed. Shedh | llaed | Gnted Rl e

Thermaocouple Sheath Opticns

B Faster response comes at
the expense of
mechanical integrity and
robustness.




B Exposed Fast Response:
Fastest response time
constant (typically 2
seconds), depending on
the gauge of junction
wire.

M In addition to problems of
the exposed bead type,
the protruding and light

Sealed Sealed and Sealed and Exposed Exposed

construction makes this el logled | Gronded Rt o
thermOCOUple even more Thermaocouple Sheath Options

prone to physical

damage.




Sheathed Thermocouples & Compression Fittings

B When used with a
compression fitting, care
must be taken to ensure
that the tip of the
thermocouple is in the
center of the liquid or gas
stream to be measured.

® Over-tightening of the
compression fitting can
cause the ferrule to cut
Into the sheath too
deeply, causing
erroneous read back or
failure.

77777777
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Adhesive Backed Thermocouples




Bolt On Thermocouple




Magnet Mount Thermocouples




Fine Gauge Wire Thermocouples

B For better sensitivity and
response, fine gauge wire
thermocouples should be
used, if the application
permits.

B Keep in mind that these
are delicate and
susceptible to vibration if
not properly affixed.




Installation Suggestions

B Because thermocouples operate in the uV-mV range, they are
susceptible to noise. ALWAYS use twisted/shielded pairs with
the shield grounded at the meter end of the cable, and floating

at the other.

M This is a good rule of thumb for ALL signal cables, not just
thermocouples.

B Between the Booster/SR RF cavities, the SR pinger and
kicker chambers and the S25 bellows liner tests, | have been
Involved in the installation of over 550 thermocouples in an
iIncredibly noisy environment. Other than a few special case
exceptions, none have experienced noise issues using this
wiring technique.




Proper Shield Grounding Technique:

Thermocouple End Meter End




Installation Suggestions

® \Whenever possible, run the wires away from noise and
heat sources (motors, transformers, heating ducts, etc.).

B Cable length has a major effect. 20 AWG type K
extension wire Is only good for ~ 170’. Consult
manufacturer’'s recommendations for long runs.

M In order to minimize noise and ground loop problems,
use ungrounded, sheathed thermocouples whenever
possible.




Thermocouple Troubleshooting — Common Issues

B Open thermocouple
M Flakey read back

B Read back opposite of
what you would expect

B Sudden changes that may
or may not be real

B Read back known not to
be accurate (e.g. at rest
or ambient temperature is
Incorrect)




B Open Thermocouple — Many
modern day meters are
capable of detecting an open
and displaying this in some
form of user interface, “OPEN”,
an error code, or a high end-of-
scale temperature.

B Checking can also be done
with an ohm meter after first
disconnecting the TC from the
meter. A good thermocouple
should read a very low (almost
dead short), resistance.
Connecting wire will add to this
value.

B An open indication can also be
caused by a blown component
or an open trace on the meter’s
circuit board.




M Flakey Read Backs

— Can be caused by a ground loop.
— Noise issues

— Broken Sheath — Particularly when used in a
water application with a compression fitting.
The ferrule scores the sheath and over time it
weakens, and eventually water is able to

penetrate and compromise the mineral oxide
Insulation.




B Read Back Opposite What You
Would Expect. - (i.e. You know it's
getting hotter but the read back
shows it's getting cooler)

— Polarity is incorrect. Unlike
other DC circuits, the red wire on
a thermocouple is ALWAYS
negative (in the U.S.).

M |f the wire color cannot be
determined a small magnet can be N
used. The + |lead is non-magnetic
while the — lead is magnetic.

B Many, but not all manufacturers also
trim the negative lead shorter.

B The larger pin on a connector is also
the negative lead.




B Sudden Changes That May Or May Not Be Real — This
IS a problem that can be more difficult to troubleshoot.
Sudden changes can be caused by noise, but also by
vibration, movement of the wires or probe, or unrelated
equipment turning on or off (also a noise issue).

Or...it can be real. Ask questions. Did something in
the environment change? |s something external to the
item of interest, affecting it's temperature (e.g. loss of
beam, change in power, supply water temperature)?

Redundancy and data logging are good things and a
luxury we often take for granted. Check other data
sources if available, and start here before tearing into
hardware.




B Notice cavity 2’s aisle finger temperature compared to
the other three cavities. Is it real? Why the sudden

change?
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M Introduction of beam at the same time. But why is
cavity 2 so different from the other cavities? Again, is it

real?
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B Cavity 2 downstream fingers are hotter than the others
but not nearly as hot as the aisle temperatures (>65C).

Might be real.
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B Cavity 3 upstream fingers also show some elevated
heating. One would have to conclude that this is real.
What about the little spikes?
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B Many times the best place to start
troubleshooting a thermocouple
problem is to use a portable
thermocouple calibrator, which
reads thermocouples and also
simulates a thermocouple output
voltage.

B This can sometimes determine
whether it is the TC or the meter
that is defective, but beware...

® Virtually all modern meters,
whether rack mounted or hand-
held, do some type of signal
processing (averaging, filtering,
etc.). Noise seen by your rack
meter may not have an effect on
your hand-held and vice-versa.




M Read Back Known Not To Be Accurate (e.g. at rest or
ambient temperature is incorrect) — This is most likely
one of three things.

1). The thermocouple circuit is not calibrated.
2). The cold junction compensation is defective.

3). The connecting wires have degraded to a point
where they no longer conform to the NBS polynomial
standard used to convert the thermocouple voltage to a
temperature. This can be caused by high temperatures
or cold-working of the metal.

e There is no sure-fire way to determine #'s 2 & 3. Start
with the calibration then replace either the meter or the
wiring, whichever is easier or less expensive.




Thermocouple Circuit Calibration

M There are two basic ways to calibrate your thermocouple
circuit. Using an ice bath or using a mercury thermometer.
Both work well. The ice bath is probably slightly more
accurate but not practical/suitable for most applications. |
prefer the mercury thermometer with some heat conductive
goop.

B Place the thermometer as close as possible to the
thermocouple and wait for the temperature to level out.

W Use the temperature read from the thermometer to calibrate
the thermocouple circuit. This may be an adjustment to the
meter’'s CJC, the entry of the temperature in a calibration
mode, the entry of an offset (not the best way), etc.,
depending on the meter being used. Check the
manufacturer’s product manual.




Theory of Operation — RTD’s

B An RTD is a temperature
measuring device that
changes resistance with R wi
temperature change, rather %

R_t

than changing voltage, as — R-total
with a thermocouple. -
B Most commonly used is the R_w2
platinum 100 ohm RTD
because of it’s stability in air RTD Resistance Equation
and linearity. It's resistance R t=R total—-R wl-R w2

IS 100 ohms @ 0 Deg.C and
Increases with temperature.




B Common terms associated with RTD’s

are temperature coefficient or alpha, and
tolerance class.

Alpha is ohms per ohm per Deg.C.

The average resistance change per unit
of temperature from boiling point to ice
point of water

R_boiling — R_ice point/100deg/1000hms
138.5 — 100.0/100/100 = .00385

Tolerance class is the amount an RTD
will differ from the standard resistance
curve per Deg.C.

Class A (+/- .15 + .002*t)
@ temp of 100DegC = +/- .35DegC

|

IEC751 |
(PLI00) l 0.00385055 100

200°C < t < 0°C
a=13.90830x1073

c=
-4.18301x10°12
0°C < t < 850°C
a & b as above,
but
c=0.0

b=-5.77500x10"7 |

| Australia, Austria,
‘Belgium, Brazil,
| Bulgaria, Canada,

Czech Rep,
Denmark, Egypt,
Finland, France,

'Germany, Israel,
Italy, Japan,
;Polamt!, Rumania,
‘Sth. Africa,

| Turkey, Russia,
UK, USA

0.0039200

98.129

c=

|
a=23.97869x107

) <7 |
b = -5.86863x10 usA

| -4.16696x10°12 |

[
| ClassA  |£(0.15+0.002.|t])|
Classp |+ (€030+0.005 |t|
_____ i ot
i 0D +) 0.009. | t|
Classp | *(0:60+00018.|¢




B My meter does the calculations, why tell me about alpha and
tolerance class?

B Your meter needs to either:
Be ordered with the correct alpha calibration.
Have a programmable alpha option.

B When ordering an RTD, a tolerance class will be part of the
order, dependant on the application. IEC 751 stipulates that
the RTD be marked with it's nominal RO value, it's tolerance
class, the wiring configuration and the temperature range.

Pt100/A /3 /-100/+200

Platinum 100 Ohm / Class A / 3-Wire / -100 to +200 Deg.C




B The most common RTD
configuration is the three-
wire type. This
configuration is more than
adequate for 99.9% of
applications. If absolute
accuracy Is needed, a fourth
wire can be introduced, but
rarely is it worth the added
cost.

B Another configuration is a
two wire RTD with a stand-
alone loop. (Probably rarely
used today).

;

100 Ohm

3

RTD
Platinum RTD Meter
Platinum RTD Meter




Theory of Operation — RTD’s

M Since the RTD is a resistance
device, the resistance of the é 100 Ohm RTD
\

wires used to connect the RTD Platinum RTD Meter
to the measurement meter
Introduces errors and must be
known. This is the reason a
third (or fourth), wire is used.

B First the meter reads the
resistance of the two common %
\

wires to determine the value of
Rwire. For a three wire RTD, it
IS assumed that this resistance
IS the same as that of one

100 Ohm RTD
Platinum RTD Meter

common and one non-common
wire.




B Then the meter reads the
resistance of one of the
common wires, the RTD,
and the non-common wire
to determine Riota

B Meter electronics and
software then subtract
Ruire from Rtal 10 get R
which Is then converted to

a temperature.

3

100 Ohm
Platinum RTD

Rt = Rtotal — Ruwire

RTD
Meter




RTD Types and Installation

B Many configurations
available, similar to
thermocouples.
Sheathed, bolt-on,
flexible, surface mount,
etc.

B Keep in mind that the
RTD element is very
fragile, use a sheathed
configuration if possible




RTD Troubleshooting Common Issues

B Troubleshooting RTD’s can be done using the same methods as
with thermocouples — using an ohm meter or handheld calibrator.

B Noise is normally not an issue, but don’t overlook it.

® |f the temperature is known, use an ohm meter to perform the
Rt = Rtotal-Rwire calculation.

— May be a software problem with the meter
— May have the wrong alpha setting
— Shorted/grounded wires

— 4-20mA “Hockey Puck” defective, wrong alpha or not
calibrated (Water Group likes to use this configuration)

— Sheath compromised if this is the configuration




Other Temperature Measurement Devices

B Temperature Indicating Tapes, Crayons
and Paints

MInfrared Thermometers

HMinfrared Imagers




Temperature Indicating Tapes, Crayons and Paints
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Infrared Thermometers

Shown with HH-DM Option Installed




Infrared Thermometers — Terms and Definitions

® Field of View
— The angle of vision at which the instrument operates

— Infrared thermometers determine the average temperature of
all surfaces within the field of view

* For accurate measurement, the object being measured
should completely fill the field of view.

____ -—
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Infrared Thermometers — Terms and Definitions

B Emissivity, Transmissivity & Reflectivity
— Emissivity
* The ratio of the energy radiated by an object at a given

temperature to the energy emitted by a perfect radiator, or
blackbody, at the same temperature

* Range 0.0to 1.0
 Blackbody emissivity = 1.0

* The higher the emissivity, the easier it is to obtain accurate
measurements

— Transmissivity

* A measure of an object’s ability to pass or transmit infrared
energy

— Reflectivity
* A measure of an objects ability to reflect infrared energy

BE+T+R=1.0




Ways to Determine Emissivity

B Heat a sample of the object to a known temperature, then adjust the
emissivity to obtain the correct value.

B For lower temperatures, place a piece of electrical tape (E=0.95) on the
object, then adjust the emissivity until the object material reads the same.

B For higher temperatures, drill a hole in the object (depth = diameter x 6).
The hole acts like a blackbody with an emissivity of 1.0. Measure the
temperature of the hole, then adjust the emissivity to obtain the correct
temperature of the object material.

— Not always practical due to field of view considerations

B Dull black paint has an emissivity of ~1.0. Paint a section of the object
then adjust the emissivity of the unpainted area to obtain the same
temperature.

B Consult an emissivity table. Values for most materials are documented,

but other factors such as amount of oxidation can affect the emissivity.
Using one of the methods above will produce a more accurate reading.
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Infrared Imagers

M Very expensive
$30k to $60k

® Very useful diagnostic
tool as it gives you visual
feedback

B Cursor “spots” can be
moved within the image
to obtain temperature
data, even with a saved
Image

www.Xx20.org




Infrared Images
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